

The impact of baryons and sensitivity of dark energy measurements

David Copeland Institute for Astronomy, University of Edinburgh Collaborators: Andy Taylor, Alex Hall *dcope@roe.ac.uk*

COSMO-17

29/08/2017

Precision cosmology complicated by baryon feedback

Stage IV surveys (DESI, Euclid, LSST etc.) use vast number of observations to probe dark energy signatures in **large scale structure** via weak gravitational lensing and galaxy clustering

Baryonic astrophysics makes LSS tougher to model: poor physical understanding of effects that impact a large range of scales.

Potential to obscure signatures of DE by mimicking its effects? (Require percent level precision)

Some baryonic phenomena...

AGN radiation (or jets) drives outflow beyond the virial radius

Supernova feedback transfers energy to gas that expands on halo scales

Motivation for a generic baryon-halo model?

Haloes are effective characterisations of nonlinear structure

Adiabatic contraction captured by modifying concentrations

1) A_B controls the amplitude of the halo profile via the concentration factor (Mead *et al.*, MNRAS, 2015)

 $\rho\left(r\right) = \frac{\rho_{N}}{\frac{r}{r_{c}}\left(1 + \frac{r}{r_{c}}\right)^{2}}$

Impact of feedback varies over scale and mass

2) η_0 introduces a **mass-dependent** modification of the halo shape (Mead *et al.*, MNRAS, 2015)

Small-scale physics captured by parameterising a core (instead of a cusp)

Distinct baryon effects on weak lensing power spectrum

Dark energy effects on matter power spectrum We assume a simple DE model parameterised by the scale factor:

Dark energy effects on weak lensing power spectrum

$$C_{ij}^{\kappa} = \frac{9}{4} \Omega_m^2 \left(\frac{H_0}{c}\right)^4 \int_0^{\chi_{max}} \mathrm{d}\chi \, \frac{q_i\left(\chi\right) q_j\left(\chi\right)}{a^2\left(\chi\right)} \, P_\delta\left(k = \frac{\ell}{f_K\left(\chi\right)}, \chi\right)$$

Fisher information sensitivity

10% level impact on Dark Energy

10 parameter Fisher analysis for weak lensing projection of matter power spectrum (Euclid-like survey) : 3 Baryon + 7 w₀w_aCDM

Baryon constraints sensitive to cosmology

Conversely, constraining baryon effects themselves depends significantly on the precision to which cosmology is measured.

Increasing ℓ_{max} doesn't help much...

Required improvement factor from external sources

Summary

- Baryons affect the matter power spectrum P(k) beyond the percent level.
- Generic baryon-halo model can be used to investigate impact on forecasts for cosmological parameters.
- ~10 % impact for dark energy parameters for a Euclid-like survey.
- Can also constrain baryon effects themselves from future surveys.
- Increasing ℓ_{max} has a very limited improvement, as relative baryon degradation increases.
- To mitigate degradation to 1 % level, we require additional baryon priors approximately twice the conditional errors obtained by Euclid alone.

Model bias

Thanks for listening!