

Quintessential Inflation with *a*-attractors

Konstantinos Dimopoulos

Lancaster University

CFP

arXiv: 1703.00305 [gr-qc] JCAP 06 (2017) 027

Work done with: Charlotte Owen

Accelerated Expansion

- Observations suggest that expansion is accelerated at early and late times
- Primordial: Horizon & Flatness, Scale invariant perturbations
- Current: SN-la, Age problem, Planck 2015: $w = -1.006 \pm 0.045$
- Accelerated expansion \rightarrow Universe dominated by Dark Energy $w < -\frac{1}{3}$
- Accelerated expansion = quasi-de Sitter $w \approx -1$
- Inftationary Paradigm: Early Universe dominated by potential density of scalar field (inflaton field)
- Current Dark Energy: Non-zero vacuum density $\Lambda \neq 0$
 - ▶ But Λ = fine-tuned as vacuum density ~ 10^{-120} of Planck density "worse fine-tuning in Physics" Laurence Krauss
- Quintessence: Universe dominated by potential density of another scalar field; the 5th element after baryons, CDM, photons & neutrinos
 ▶ Does not resolve Λ problem: vacuum density assumed zero

Quintessential Inflation

- Quintessence problems:
 - Initial conditions
 - 5 } ameliorated by tracker quintessence
 - Coincidence
 - ▶ Potential flatness against radiative corrections $\sim \exp(\beta_i \phi/m_P) \mathcal{L}_i$
 - ► 5th force problem: violation of the Principle of Equivalence
- Quintessential Inflation: Both inflation and current acceleration Peebles & Vilenkin 1999 Jue to the same field (cosmon)
 - Natural: inflation & quintessence based on the same idea
 - Economic: fewer parameters / mass scales & couplings
 - Common theoretical framework
 - Initial conditions for quintessence determined by inflationary attractor
 - Coincidence resolved by mass scales & couplings only

- Potential for Quintessential Inflation features two flat regions: Inflationary Plateau & Quintessential Tail. Differ by ~ 10¹⁰⁸
 Form of Potential = artificial + Physics at extreme scales
- Inflaton does not decay; must survive until the present
 - Non-oscillatory inflation
 - Reheating achieved by means other than inflaton decay
- Radiative corrections and 5th force problems unresolved

α- attractors to the rescue

- Scalar kinetic term features poles due to non-trivial Kähler manifold
- Switching to canonically normalised field transposes poles to infinity generating plateaus in the scalar potential (poles are never reached)
 Can explain form of Quintessential Inflation potential (not artificial)
- Variation of canonically normalised field can be super-Planckian while variation of the non-canonically normalised field remains sub-Planckian
- Sub-Planckian excursion avoids radiative corrections and 5th force
 - Strongly super-Planckian variation for canonical field can bridge difference between inflationary plateau and quintessential tail

$$egin{aligned} \mathcal{L}_{ ext{kin}} &= rac{rac{1}{2} \partial_{\mu} \phi \ \partial^{\mu} \phi}{(1 - rac{\phi^2}{6lpha})^2} \, m_P^2 \ & |\phi| < \sqrt{6lpha} \end{aligned}$$

$$\phi = \sqrt{6lpha} anh rac{arphi}{\sqrt{6lpha} m_P}$$

- Exponential potential
- Poles from α attractors
- No vacuum density
- $V(\boldsymbol{\varphi}) = e^{\frac{1}{2m} \frac{\partial \mu}{\partial 4} \frac{\partial^{\mu} \phi}{\partial x}} (\mathbf{\varphi})_{P}^{2} = ta \mathbf{W}_{0} e^{-\mathbf{\varphi}} \frac{\partial \mu}{\partial x}} \left[(\mathbf{\varphi})_{P}^{2} = ta \mathbf{W}_{0} e^{-\mathbf{\varphi}} \frac{\partial \mu}{\partial x} \right] \mathbf{A} \mathbf{1}$
- Switch to canonical field $M^4 \equiv e^n V_0$ $\Lambda = e^{-2n} M$ $n \equiv \kappa \sqrt{6 lpha}$

Inflation • In the limit: $\varphi \to -\infty$ $(\phi \to -\sqrt{6\alpha})$ $V(\varphi) \simeq M^4 \exp\left[-2ne^{\frac{2\varphi}{\sqrt{6\alpha}m_P}}\right]$ 0.20 Inflationary **3** observations 0.15 n_s = N_* r 0.10 $d \ln$ $\sqrt{3\alpha}$ 0.05 n'_s dl 0.00 0.95 $^{0.99}10^{15}\,{ m GeV}$ 0.96 0.97 0.98 Nns $\rightarrow 0 \Rightarrow n_s \simeq 0.9685 \quad n'_s \simeq -5.11 \times 10^4 \, {}_{1}$ With: α Planck: $n_s = 0.968 \pm 0.006$ $n'_s = -0.003 \pm 0.007$

Kination

 $\ddot{arphi}+3H\dot{arphi}\simeq 0$

aend

ettav/tin

 $ho_{
m kin}\equiv rac{1}{2}\dot{arphi}^2\propto a^{-6}$

 $ho_\gamma \propto a^{-4}$

= 63.49

- **Kination:** After inflation kinetic density dominates
 - Inflaton oblivious of potential
 - Field rolls to quintessential tail
- **Reheating:** Radiation eventually dominates
 - ► Field rolls for a while but eventually freezes
 - Residual density = Dark Energy today
- Maximum roll for minimum reheating efficiency (minimum residual density)
- In p ritational Reheating: Due to inflationary particle production of Gra Ford (198χ) ρ₆~ a⁻⁶ all light, non-conformally invariant fields $(a^{\text{end}})\frac{1}{2}/4$

93 +

- Reheating $\mathbf{T}_{reh} \simeq$ temperature:
 - Inflationary e-folds:
- Frozen field:

Quintessence

• In the limit: $\varphi \to +\infty$ $(\phi \to \sqrt{6\alpha})$ $V \simeq 2ne^{-2n}M^4e^{-\frac{2\varphi}{\sqrt{6\alpha}m_P}}$

Conclusions

- Quintessential Inflation may well be modelled in the context of α-attractors in Supergravity
- Single field with natural mass scales & couplings
- Inflationary observables in excellent agreement with CMB $n_s=0.9686~n_s'=-5.09 imes10^{-4}~{
 m and}~r\sim 10^{-(3-4)}$
- Quintessence avoids fine-tunings $~~\kappa \sim m_P/M~~$

 $V_0^{1/4} = 10^{5-12}\,{
m GeV}$ and $\Lambda^{1/4}\gtrsim 10^2\,{
m GeV}$

- Temporary acceleration avoids problem of future horizons in String Theory (unlike ΛCDM) $0.03 \leq \alpha \leq 0.33$
- α-attractors naturally avoid radiative corrections and 5th force problems, while generate a potential with multiple plateaus, which can accommodate Quintessential Inflation

Temporary acceleration explained

- **3** attractor solution, which does **NOT** lead to eternal acceleration
- Field unfreezes and follows attractor, but briefly oscillates around it
- Oscillation can result in brief boost of accelerated expansion

