Electroweak vacuum metastability and low-scale inflation

Yohei Ema

University of Tokyo

COSMO-17 @ Paris Diderot University 28.08.2017

Based on arXiv:1706.08920 with K. Mukaida (Kavli IPMU \rightarrow DESY) and K. Nakayama (Tokyo U.)

Introduction

Metastability

Electroweak (EW) vacuum may be metastable??

λ becomes negative $\sim 10^{10} \mathrm{GeV}$ for the center value of M_{top}.

Cosmology must be compatible with it.

Metastability vs inflation

- Energy scale during inflation: H_{inf} (Hubble parameter) Metastability can be problematic for $H_{\text {inf }} \gtrsim h_{\text {inst }}$.
[Espinosa+07; Lebedev+12; Kobakhidze+13; ...]
This is why most people mainly concern high-scale inflation models.
- But, energy scale after inflation: m_{ϕ} (inflaton mass)

Metastability can be problematic for $m_{\phi} \gtrsim h_{\text {inst }}$.
[Herranen+15; YE+16; Kohri+16; Enqvist+16; ...]

- Typically $m_{\phi} \gg H_{\text {inf }}$ for low-scale inflation. tye, Mukaida, Nakayama 171 Metastability has interesting implications even for low-scale inflation with $h_{\mathrm{inst}} \gg H_{\mathrm{inf}}$.

Outline

1.Introduction

2.Resonant particle production
3.Numerical results
4.Summary

Outline

1.Introduction

2.Resonant particle production 3.Numerical results
4.Summary

Dynamics of inflaton

1. Slow-roll during inflation.
= accelerated expansion
2. Oscillate after inflation.
if exponential particle production preheating epoch

3. Finally decay, and reheating completes.
= beginning of hot big bang

Dynamics of inflaton

1. Slow-roll during inflation.
= accelerated expansion

2. Oscillate after inflation.
if exponential particle production preheating epoch

3. Finally decay, and reheating completes.
$=$ beginning of hot big bang

Set up

- Take the hill-top inflation model as an example. [Boubekeur, Lyth 05]

$$
\begin{aligned}
& V(\phi)=\Lambda^{4}\left[1-\left(\frac{\phi}{v_{\phi}}\right)^{6}\right]^{2} \\
& H_{\mathrm{inf}} \simeq 10^{7} \mathrm{GeV}, \quad m_{\phi} \simeq 2 \times 10^{11} \mathrm{GeV} \text { for } v_{\phi} / M_{\mathrm{pl}}=10^{-3} .
\end{aligned}
$$

- Coupling between inflaton and Higgs at around the minimum:

$$
\mathcal{L}_{\text {int }}=\frac{\lambda_{h}}{4} h^{4}+\frac{\sigma_{h \phi}}{2} \varphi h^{2}+\frac{\lambda_{h \phi}}{2} \varphi^{2} h^{2},
$$

where $\varphi \equiv v_{\phi}-\phi$ is the inflaton at around the minimum.

$$
{ }^{*} m_{h}^{2} \simeq 0 \text { at the minimum } \varphi=0 \text { to realize the EW scale. }
$$

Particle production

- Higgs production: qualitatively described by Whittaker-Hill equation.

$$
\begin{aligned}
& \frac{d^{2} h_{k}}{d z^{2}}+\left[A_{k}+2 p \cos 2 z+2 q \cos 4 z\right] h_{k}=0, \\
& A_{k}=\frac{4 k^{2}}{m_{\phi}^{2}}+2 q, p=\frac{2 \sigma_{h \phi} \varphi_{\mathrm{ini}}}{m_{\phi}^{2}}, q=\frac{\lambda_{h \phi} \varphi_{\mathrm{ini}}^{2}}{m_{\phi}^{2}}, z=\frac{m_{\phi} t}{2} .
\end{aligned}
$$

Unshaded region = resonant particle production.

- Inflaton particle: also resonantly produced due to anharmonic potential.

It breaks the inflaton condensation $=$ the end of the preheating.

Main idea: Higgs production causes tachyonic mass to Higgs

$$
m_{\mathrm{tac}}^{2} \simeq-3\left|\lambda_{h}\right|\left\langle h^{2}\right\rangle
$$

from the negative quartic coupling \rightarrow causes the EW vacuum decay.

Outline

1.Introduction

2.Resonant particle production

3.Numerical results
4.Summary

Lattice simulation

- We performed classical lattice simulation with

$$
d=2+1, N=2048, L=1500 m_{\phi}^{-1}, d t=5 \times 10^{-3} m_{\phi}^{-1} .
$$

- EW vacuum indeed decays during the preheating epoch!!

$v_{\phi} / M_{\mathrm{Pl}}=10^{-2}$, black: $\langle\varphi\rangle^{2}$, red : $\left\langle\varphi^{2}\right\rangle-\langle\varphi\rangle^{2}$, blue : $\left\langle h^{2}\right\rangle$

Lattice simulation

- In order for the EW vacuum to survive the preheating epoch,

$$
|p| \lesssim \mathcal{O}(1) \text { and }|q| \lesssim \mathcal{O}(10) \quad \text { are required }
$$

$$
v_{\phi} / M_{\mathrm{Pl}}=10^{-2}, \text { black : }\langle\varphi\rangle^{2} \text {, red : }\left\langle\varphi^{2}\right\rangle-\langle\varphi\rangle^{2}, \text { blue : }\left\langle h^{2}\right\rangle
$$

Outline

1.Introduction

2.Resonant particle production

3.Numerical results

4.Summary

Summary

- EW vacuum metastability has interesting implications even for low-scale inflation with $h_{\text {inst }} \gg H_{\mathrm{inf}}$.
- The couplings should satisfy $|p| \lesssim \mathcal{O}(1)$ and $|q| \lesssim \mathcal{O}(10)$ to avoid the EW vacuum decay during preheating.

- EW vacuum stability after preheating is also non-trivial.

Back up

Metastability

Electroweak (EW) vacuum may be metastable??

λ becomes negative $\sim 10^{10} \mathrm{GeV}$ for the center value of M_{top}.

Cosmology must be compatible with it.

Inflationary prediction

Classical lattice simulation

Classical lattice simulation:

(1) Divide space coordinates into meshes.
(2) Introduce gaussian fluctuations (quantum fluctuation).
(3) Solve the discretized classical equations of motion.

* Classical approximation is valid in the large occupation number limit.

Lattice simulation

$v_{\phi} / M_{\mathrm{Pl}}=10^{-3}$, black: $\langle\varphi\rangle^{2}$, red : $\left\langle\varphi^{2}\right\rangle-\langle\varphi\rangle^{2}$, blue : $\left\langle h^{2}\right\rangle$

$$
\mathrm{p}=15, \mathrm{q}=15
$$

$\mathrm{p}=0.5, \mathrm{q}=0.5$

$p=10, q=-5$

$$
\mathrm{p}=0.5, \mathrm{q}=200
$$

