Weak lensing with finite beams

Pierre Fleury

1

Presentation based on [1706.09383] with J. Larena (UCT) and J.-P. Uzan (IAP)

Light bending generates image distorsions:

Light bending generates image distorsions:

1. convergence

Light bending generates image distorsions:

1. convergence

Light bending generates image distorsions:

1. convergence

2. shear

Light bending generates image distorsions:

1. convergence

2. shear

Theory: infinitesimal beams

$$\frac{\mathrm{D}^2 \delta x^{\mu}}{\mathrm{d}\lambda^2} = R^{\mu}{}_{\nu\rho\sigma} k^{\nu} k^{\rho} \delta x^{\sigma}$$

Theory: infinitesimal beams δx^{μ} curvature 'here' $\frac{\mathrm{D}^2 \delta x^{\mu}}{\mathrm{d} \lambda^2}$ $R^{\mu}{}_{\nu\rho\sigma}k^{\nu}k^{\rho}\delta x^{\sigma}$

Theory: infinitesimal beams δx^{μ} curvature 'here' $\frac{\mathrm{D}^2 \delta x^{\mu}}{\mathrm{d} \lambda^2}$ $= (R^{\mu}{}_{\nu\rho\sigma}k^{\nu}k^{\rho}\delta x^{\sigma}$

Valid only if $|\delta x^{\mu}| \ll \rho/\partial \rho$

Theory: infinitesimal beams δx^{μ} curvature 'here' $\frac{\mathrm{D}^2 \delta x^{\mu}}{\mathrm{d} \lambda^2}$ $R^{\mu}_{\nu\rho\sigma}k^{\nu}k^{\rho}\delta x^{\sigma}$ Never true! Valid only if $|\delta x^{\mu}| \ll \rho/\partial \rho$

$$R_{\mu\nu\rho\sigma} = R_{[\mu\rho}g_{\nu\sigma]} + C_{\mu\nu\rho\sigma}$$

Pure theory

- How can spacetime curvature depend on the beam?
- Is there a Weyl to Ricci transition?

Pure theory

- How can spacetime curvature depend on the beam?
- Is there a Weyl to Ricci transition?

Observational cosmology

- To which extent can we trust the infinitesimal beam?
- Are there new observables for finite beams?

lens equation:
$$\boldsymbol{\beta} = \boldsymbol{\theta} - \sum_{k=1}^{N} \varepsilon_k^2 \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{|\boldsymbol{\theta} - \boldsymbol{\theta}_k|^2}$$

lens equation:
$$\boldsymbol{\beta} = \boldsymbol{\theta} - \sum_{k=1}^{N} \varepsilon_k^2 \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{|\boldsymbol{\theta} - \boldsymbol{\theta}_k|^2}$$

lens equation:
$$\boldsymbol{\beta} = \boldsymbol{\theta} - \sum_{k=1}^{N} \varepsilon_k^2 \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{|\boldsymbol{\theta} - \boldsymbol{\theta}_k|^2}$$

lens equation:
$$\boldsymbol{\beta} = \boldsymbol{\theta} - \sum_{k=1}^{N} \varepsilon_k^2 \frac{\boldsymbol{\theta} - \boldsymbol{\theta}_k}{|\boldsymbol{\theta} - \boldsymbol{\theta}_k|^2}$$

Lensing can be complex

$$oldsymbol{eta} = oldsymbol{ heta} - \sum_{k=1}^N arepsilon_k^2 \, rac{oldsymbol{ heta} - oldsymbol{ heta}_k}{|oldsymbol{ heta} - oldsymbol{ heta}_k|^2}$$

Lensing can be complex

$$\boldsymbol{eta} = \boldsymbol{ heta} - \sum_{k=1}^{N} \varepsilon_k^2 \, rac{\boldsymbol{ heta} - \boldsymbol{ heta}_k}{\left| \boldsymbol{ heta} - \boldsymbol{ heta}_k
ight|^2}$$

Replace 2-vectors by complex numbers:

eta
ightarrow seta
ightarrow z $eta_k
ightarrow w_k$

Lensing can be complex

$$oldsymbol{eta} = oldsymbol{ heta} - \sum_{k=1}^N arepsilon_k^2 rac{oldsymbol{ heta} - oldsymbol{ heta}_k}{|oldsymbol{ heta} - oldsymbol{ heta}_k|^2}$$

Replace 2-vectors by complex numbers:

$$eta
ightarrow s$$

 $eta
ightarrow z$
 $eta_k
ightarrow w_k$

$$\Omega = \frac{1}{2\mathrm{i}} \int_{\mathcal{I}} z^* \mathrm{d}z$$

$$\Omega = \frac{1}{2i} \int_{\mathcal{I}} z^* dz = \Omega_{S} + \sum_{k \in \mathcal{S}} 2\pi \varepsilon_k^2$$

- Light beams smooth out the matter they encounter
- No Weyl to Ricci transition, just Ricci!

From the image quadrupole

$$\gamma = \sum_{k \in \mathcal{S}} \left(\frac{\varepsilon_k w_k}{\beta^2} \right)^2 - \sum_{k \notin \mathcal{S}} \left(\frac{\varepsilon_k}{w_k} \right)^2$$

Fourier decomposition:

$$z = \sum_{\ell \in \mathbb{Z}} z_{\ell} \,\mathrm{e}^{\mathrm{i}(\ell+1)\varphi}$$

Fourier decomposition:

$$z = \sum_{\ell \in \mathbb{Z}} z_{\ell} e^{i(\ell+1)\varphi}$$

$$z_{\ell>0} = \frac{1}{\beta} \sum_{k \in \mathcal{S}} \varepsilon_k^2 \left(\frac{w_k^*}{\beta}\right)^\ell$$
$$z_{\ell<0} = -\frac{1}{\beta} \sum_{k \notin \mathcal{S}} \varepsilon_k^2 \left(\frac{w_k^*}{\beta}\right)^\ell$$

11

In standard weak lensing, one has $P_{\gamma}(k) = P_{\kappa}(k)$

In standard weak lensing, one has $P_{\gamma}(k) = P_{\kappa}(k)$

For
$$k=0$$
, this implies $\,\sigma_\gamma^2=\sigma_\kappa^2$

In standard weak lensing, one has $P_{\gamma}(k) = P_{\kappa}(k)$

For
$$k=0$$
, this implies $\,\sigma_{\gamma}^2=\sigma_{\kappa}^2$

But for with finite beams, in a Universe randomly filled with point masses, we find

$$\sigma_{\gamma}^2 = \frac{4}{3}\sigma_{\kappa}^2$$

In standard weak lensing, one has $P_{\gamma}(k) = P_{\kappa}(k)$

For k=0, this implies $\sigma_{\gamma}^2=\sigma_{\kappa}^2$

But for with finite beams, in a Universe randomly filled with point masses, we find

Conclusion

Context

- standard weak lensing assumes infinitesimal beams
- it raises theoretical and observational issues

Our work

used the strong-lensing language to deal with finite beams

Results

- understand the Ricci/Weyl dichotomy
- generic violation of shear-convergence relation
- new observables?