Weak lensing with finite beams

Pierre Fleury

Presentation based on [1706.09383] with J. Larena (UCT) and J.-P. Uzan (IAP)

Weak lensing

Light bending generates image distorsions:

Weak lensing

Light bending generates image distorsions:

1. convergence

Weak lensing

Light bending generates image distorsions:

1. convergence

Weak lensing

Light bending generates image distorsions:

1. convergence

2. shear

Weak lensing

Light bending generates image distorsions:

1. convergence

2. shear

Theory: infinitesimal beams

$$
\frac{\mathrm{D}^{2} \delta x^{\mu}}{\mathrm{d} \lambda^{2}}=R_{\nu \rho \sigma}^{\mu} k^{\nu} k^{\rho} \delta x^{\sigma}
$$

Theory: infinitesimal beams

Theory: infinitesimal beams

Valid only if $\left|\delta x^{\mu}\right| \ll \rho / \partial \rho$

Theory: infinitesimal beams

Valid only if $\left|\delta x^{\mu}\right| \ll \rho / \partial \rho$

The Ricci/Weyl dichotomy

$$
R_{\mu \nu \rho \sigma}=R_{[\mu \rho} g_{\nu \sigma]}+C_{\mu \nu \rho \sigma}
$$

The Ricci/Weyl dichotomy

The Ricci/Weyl dichotomy

The Ricci/Weyl dichotomy

Questions

Pure theory

- How can spacetime curvature depend on the beam?
- Is there a Weyl to Ricci transition?

Questions

Pure theory

- How can spacetime curvature depend on the beam?
- Is there a Weyl to Ricci transition?

Observational cosmology

- To which extent can we trust the infinitesimal beam?
- Are there new observables for finite beams?

The strong rescuing the weak

Our method: deal with each ray of light individually

The strong rescuing the weak

Our method: deal with each ray of light individually

The strong rescuing the weak

Our method: deal with each ray of light individually

The strong rescuing the weak

Our method: deal with each ray of light individually

lens equation: $\quad \boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}$

The strong rescuing the weak

Our method: deal with each ray of light individually

lens equation: $\quad \boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}$

The strong rescuing the weak

Our method: deal with each ray of light individually

lens equation: $\quad \boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}$

The strong rescuing the weak

Our method: deal with each ray of light individually

lens equation: $\quad \boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}$

Lensing can be complex

$$
\boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}
$$

Lensing can be complex

$$
\boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}
$$

Replace 2-vectors by complex numbers:

$$
\begin{aligned}
\boldsymbol{\beta} & \rightarrow s \\
\boldsymbol{\theta} & \rightarrow z \\
\boldsymbol{\theta}_{k} & \rightarrow w_{k}
\end{aligned}
$$

Lensing can be complex

$$
\boldsymbol{\beta}=\boldsymbol{\theta}-\sum_{k=1}^{N} \varepsilon_{k}^{2} \frac{\boldsymbol{\theta}-\boldsymbol{\theta}_{k}}{\left|\boldsymbol{\theta}-\boldsymbol{\theta}_{k}\right|^{2}}
$$

Replace 2-vectors by complex numbers:

$$
s=z-\sum_{k=1}^{N} \frac{\varepsilon_{k}^{2}}{z^{*}-w_{k}^{*}}
$$

$$
\begin{aligned}
\boldsymbol{\beta} & \rightarrow s \\
\boldsymbol{\theta} & \rightarrow z \\
\boldsymbol{\theta}_{k} & \rightarrow w_{k}
\end{aligned}
$$

Convergence

$$
\Omega=\frac{1}{2 \mathrm{i}} \int_{\mathcal{I}} z^{*} \mathrm{~d} z
$$

Convergence

$$
\Omega=\frac{1}{2 \mathrm{i}} \int_{\mathcal{I}} z^{*} \mathrm{~d} z=\Omega_{\mathrm{S}}+\sum_{k \in \mathcal{S}} 2 \pi \varepsilon_{k}^{2}
$$

Convergence

$$
\Omega=\frac{1}{2 \mathrm{i}} \int_{\mathcal{I}} z^{*} \mathrm{~d} z \Theta \Omega_{\mathrm{S}}+\sum_{k \in \mathcal{S}} 2 \pi \varepsilon_{k}^{2}
$$

Residue theorem

Convergence

$$
\Omega=\frac{1}{2 \mathrm{i}} \int_{\mathcal{I}^{*}} z^{*} \underbrace{}_{d} \underbrace{}_{\mathrm{k}}
$$

Residue theorem
Only lenses enclosed
by the beam contribute

Convergence

$$
\Omega=\frac{1}{2 \mathrm{i}} \int_{\mathcal{I}} z^{*} \mathrm{~d} z \ominus \Omega_{\mathrm{S}}+\sum_{k \in \mathcal{S}} 2 \pi \varepsilon_{k}^{2}
$$

Residue theorem
Only lenses enclosed
by the beam contribute

- Light beams smooth out the matter they encounter
- No Weyl to Ricci transition, just Ricci!

Shear

Shear

Shear

From the image quadrupole

$$
\gamma=\sum_{k \in \mathcal{S}}\left(\frac{\varepsilon_{k} w_{k}}{\beta^{2}}\right)^{2}-\sum_{k \notin \mathcal{S}}\left(\frac{\varepsilon_{k}}{w_{k}}\right)^{2}
$$

Shear

From the image quadrupole

New contribution from interior lenses!

Higher deformation modes

Higher deformation modes

Fourier decomposition:

$$
z=\sum_{\ell \in \mathbb{Z}} z_{\ell} \mathrm{e}^{\mathrm{i}(\ell+1) \varphi}
$$

Higher deformation modes

Fourier decomposition:

$$
z=\sum_{\ell \in \mathbb{Z}} z_{\ell} \mathrm{e}^{\mathrm{i}(\ell+1) \varphi}
$$

$$
z_{\ell>0}=\frac{1}{\beta} \sum_{k \in \mathcal{S}} \varepsilon_{k}^{2}\left(\frac{w_{k}^{*}}{\beta}\right)^{\ell}
$$

$$
z_{\ell<0}=-\frac{1}{\beta} \sum_{k \notin \mathcal{S}} \varepsilon_{k}^{2}\left(\frac{w_{k}^{*}}{\beta}\right)^{\ell}
$$

Higher deformation modes

Shear statistics

In standard weak lensing, one has $P_{\gamma}(k)=P_{\kappa}(k)$

Shear statistics

In standard weak lensing, one has $P_{\gamma}(k)=P_{\kappa}(k)$
For $k=0$, this implies $\sigma_{\gamma}^{2}=\sigma_{\kappa}^{2}$

Shear statistics

In standard weak lensing, one has $P_{\gamma}(k)=P_{\kappa}(k)$

$$
\text { For } k=0 \text {, this implies } \sigma_{\gamma}^{2}=\sigma_{\kappa}^{2}
$$

But for with finite beams, in a Universe randomly filled with point masses, we find

$$
\sigma_{\gamma}^{2}=\frac{4}{3} \sigma_{\kappa}^{2}
$$

Shear statistics

In standard weak lensing, one has $P_{\gamma}(k)=P_{\kappa}(k)$

$$
\text { For } k=0, \text { this implies } \sigma_{\gamma}^{2}=\sigma_{\kappa}^{2}
$$

But for with finite beams, in a Universe randomly filled with point masses, we find

Conclusion

Context

- standard weak lensing assumes infinitesimal beams
- it raises theoretical and observational issues

Our work

used the strong-lensing language to deal with finite beams

Results

- understand the Ricci/Weyl dichotomy
- generic violation of shear-convergence relation
- new observables?

