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• How can spacetime curvature depend on the beam? 
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Observational cosmology

• To which extent can we trust the infinitesimal beam? 
• Are there new observables for finite beams?



The strong rescuing the weak

6

Our method: deal with each ray of light individually 



The strong rescuing the weak

6

Our method: deal with each ray of light individually 

lens



The strong rescuing the weak

6

Our method: deal with each ray of light individually 

lens



The strong rescuing the weak

6

Our method: deal with each ray of light individually 

The lens equation relating the unlensed position of a point source —, the position of
its image ◊, and the unlensed position of the lenses ◊

k

is

— = ◊ ≠
Nÿ

k=1
Á2

k

◊ ≠ ◊
k

|◊ ≠ ◊
k

|2 . (8)

I

m
k

O
S

◊

◊
k

—

D
k

D

◊
k

—

◊

S
m

k

Figure 1 Top panel: lensing of a single source. Bottom panel: what the observer sees, source S
and image I

3.2 Weak-lensing regime
In the weak-lensing regime lenses are considered bigger than their Einstein radius so that:

1. only one image per source needs to be considered;

2. Á
k

/ |◊ ≠ ◊
k

| π 1,

in other words, the Einstein radii Á
k

can be considered small numbers, with respect to
which we are going to perform perturbative expansions.

3.3 Complex formalism
Because they are two dimensional vectors, the positions —, ◊, ◊

k

can be represented by
complex numbers s, z, w

k

, in terms of which the lens equation reads

s = z ≠
Nÿ

k=1
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k

zú ≠ wú
k

, (9)
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Convergence

8

4.2 With the complex formalism
With the complex formalism the angular area of the image reads

� = 1
2i

⁄

I
zúdz. (15)

Substituting the lens equation in both zú and dz, we have at lowest order

zú = sú +
Nÿ

k=1

Á2
k

s ≠ w
k

(16)

dz = ds ≠
Nÿ

k=1

Á2
k

dsú

(sú ≠ wú
k

)2 (17)

whence

� = 1
2i

I⁄

S
súds +

Nÿ

k=1
Á2

k

⁄

S
ds

s ≠ w
i

≠
Nÿ

k=1
Á2

k

5⁄

S
s ds

(s ≠ w
i

)2

6ú
.

J

(18)

The first term of the right-hand side is the (unlensed) angular area of the source �S.
Besides, an intergration by parts shows that the last two terms are equal to each other,
and are easily computed with the residue theorem:

⁄

S
s ds

(s ≠ w
i

)2 =
⁄

S
ds

s ≠ w
i

=
I

2fii if w
i

œ S,

0 otherwise.
(19)

Therefore
� = �S +

ÿ

kœS
2fiÁ2

k

, (20)

where k œ S means that the lens k has to be enclosed by the light beam, i.e. appear inside
the pattern of the source, in prder to be counted. In other words, the convergence Ÿ,
which is at lowest order such that 2Ÿ = �/�S ≠ 1, reads

Ÿ =
ÿ

kœS

fiÁ2
k

�S
=

ÿ

kœS

4fiGm
k

A
k

D
kSD

D
k

. (21)

where we introduced the (unlensed) area A
k

= D2
k

�S of the beam at the level of the kth
lens.

4.3 Relation with the Ricci-Weyl problem
This expression for the convergence must be compared with the e�ect of Ricci lensing.
For infinitesimal light beams the equation for the evolution of the area A of the beam is

Ô̈
A = (R ≠ ‡2)

Ô
A, (22)

9
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where k œ S means that the lens k has to be enclosed by the light beam, i.e. appear inside
the pattern of the source, in prder to be counted. In other words, the convergence Ÿ,
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ÿ
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where we introduced the (unlensed) area A
k

= D2
k

�S of the beam at the level of the kth
lens.

4.3 Relation with the Ricci-Weyl problem
This expression for the convergence must be compared with the e�ect of Ricci lensing.
For infinitesimal light beams the equation for the evolution of the area A of the beam is

Ô̈
A = (R ≠ ‡2)

Ô
A, (22)

9

4.2 With the complex formalism
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where we introduced the (unlensed) area A
k

= D2
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�S of the beam at the level of the kth
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4.3 Relation with the Ricci-Weyl problem
This expression for the convergence must be compared with the e�ect of Ricci lensing.
For infinitesimal light beams the equation for the evolution of the area A of the beam is

Ô̈
A = (R ≠ ‡2)

Ô
A, (22)

9

Only lenses enclosed 
by the beam contribute

Residue theorem
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where k œ S means that the lens k has to be enclosed by the light beam, i.e. appear inside
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k
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4.3 Relation with the Ricci-Weyl problem
This expression for the convergence must be compared with the e�ect of Ricci lensing.
For infinitesimal light beams the equation for the evolution of the area A of the beam is
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A = (R ≠ ‡2)

Ô
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9

Only lenses enclosed 
by the beam contribute

Residue theorem

• Light beams smooth out the matter they encounter 
• No Weyl to Ricci transition, just Ricci!
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We conclude that

q = fl

2fi

⁄ 2fi

0
”z eiÏ dÏ ≠ fl

4fi

⁄ 2fi

0

1
”zeiÏ ≠ ”zúe3iÏ

2
dÏ, (62)

= fl

4fi

⁄ 2fi

0
”z eiÏdÏ + fl

4fi

1
”z e≠3iÏ dÏ

2ú
(63)

= fl

2 [”z≠2 + (”z2)ú] (64)

where we defined the Fourier decomposition

z =
ÿ

¸œZ
z

¸

ei(¸+1)Ï, (65)

z
¸

= 1
2fi

⁄ 2fi

0
z e≠i(¸+1)Ï dÏ. (66)

6.2 Calculation of the Fourier modes
Using the complex lens equation, which gives

”z =
Nÿ

k=1

Á2
k

sú ≠ wú
k

, (67)

it is straightforward to calculate the Fourier modes of ”z with the residue theorem,

”z
¸Ø0 = 1
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ÿ

kœS
Á2

k

3
wú

k

fl

4
¸

”z
¸<0 = ≠1

fl

ÿ

k ”œS
Á2

k

3
wú

k

fl

4
¸

.

(68)

(69)

Only the lenses enclosed by the beam contribute to ”z
¸Æ0, while the lenses outside from

the beam contribute to the ”z
¸<0. In particular, the lensing contribution to the complex

quadrupole reads

”q = 1
2

S

U
ÿ

kœS
Á2

k

3
w

k

fl

42
≠

ÿ

k ”œS
Á2

k

3
wú

k

fl

4≠2
T

V (70)

and the corresponding shear is

“ = 2”q

fl2 =
ÿ

kœS

3
Á

k

›
k

fl2

42
e2iÏk ≠

ÿ

k ”œS

3
Á

k

›
k

42
e2iÏk . (71)

Some remarks on this result

• Both the interior and exterior lenses contribute to the net shear;

15

�
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Figure 2. Lowest Fourier modes of an image shape, generated from a circular source. The axes are normalized by the angular radius � of
the source s = �ei' (dashed lines). Solid lines indicate the sum s + �z`e�i(`+1)' . Top panel: the lens has a�x w = 2�/3, inside the beam,
and generates ` � 0 modes only. Bottom panel: the lens has a�x w = 3�/2, out of the beam, and generates ` < 0 modes only. We have
taken "2 = �2/2 3 |w � s |2 in order to visually enhance the e�ects.

The necessary evaluation of the finite-beam correction to the
full shear two-point correlation function will be addressed
in a follow-up article, as well as the possible corrections to
Etherington’s reciprocity relation.
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Figure 2. Lowest Fourier modes of an image shape, generated from a circular source. The axes are normalized by the angular radius � of
the source s = �ei' (dashed lines). Solid lines indicate the sum s + �z`e�i(`+1)' . Top panel: the lens has a�x w = 2�/3, inside the beam,
and generates ` � 0 modes only. Bottom panel: the lens has a�x w = 3�/2, out of the beam, and generates ` < 0 modes only. We have
taken "2 = �2/2 3 |w � s |2 in order to visually enhance the e�ects.

The necessary evaluation of the finite-beam correction to the
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in a follow-up article, as well as the possible corrections to
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Context
• standard weak lensing assumes infinitesimal beams 
• it raises theoretical and observational issues

Our work

Results
• understand the Ricci/Weyl dichotomy 
• generic violation of shear-convergence relation 
• new observables?

used the strong-lensing language to deal with finite beams


