Gravitational wave production during inflation revisited

Tomohiro Fujita (Kyoto U)

arXiv:1608.04216, 1705.01533, 1707.03023, 1707.03240 w/ Dimastrogiovanni(CWRU) & Fasiello(Stanford); w/Namba(McGill)&Tada(IAP) w/Komatsu&Agrawal(MPA); w/Thone(Oxford),Hazumi(KEK),Katayama(IPMU) Komatsu(MPA)&Shiraishi(Kagawa) 30th/Aug/2017 @COSMO17

PRESENTATION

How come!?

$\mathcal{P}_{GW} = \mathcal{P}_{GW}^{vac} + \mathcal{P}_{GW}^{sourced}$

PRESENTATION

How come!?

$\mathcal{P}_{GW} = \mathcal{P}_{GW}^{vac} + \mathcal{P}_{GW}^{sourced}$

Additional contribution to GW can be much larger than the conventional vacuum fluctuation of tensor mode.

PRESENTATION

How come!?

$\mathcal{P}_{GW} = \mathcal{P}_{GW}^{vac} + \mathcal{P}_{GW}^{sourced}$

Additional contribution to GW can be much larger than the conventional vacuum fluctuation of tensor mode.

What's it mean!?

- Change predictions of models
- Non-trivial to fix ρ_{inf} from obs

PRESENTATION

How come!?

$\mathcal{P}_{GW} = \mathcal{P}_{GW}^{vac} + \mathcal{P}_{GW}^{Sourced}$

Additional contribution to GW can be much larger than the conventional vacuum fluctuation of tensor mode.

What's it mean!? $r \approx 0.01 \left(\frac{\rho_{\inf}^{1/4}}{10^{16} \text{GeV}}\right)^{1}$

Change predictions of mode

• Non-trivial to fix ρ_{inf} from obs

PRESENTATION

How come!?

$\mathcal{P}_{GW} = \mathcal{P}_{GW}^{vac} + \mathcal{P}_{GW}^{Sourced}$

Additional contribution to GW can be much larger than the conventional vacuum fluctuation of tensor mode.

What's it mean!? $r > 0.01 \left(\frac{\rho_{\inf}^{1/4}}{10^{16} \text{GeV}}\right)^4$

Change predictions of mode

• Non-trivial to fix ρ_{inf} from obs

HOW'S it work?

Adding axion-SU(2) gauge spectator sector

 $+\frac{1}{2}(\partial\chi)^2 - \mu^4\left(\cos\frac{\chi}{f} + 1\right)$

 $-\frac{1}{\lambda}F^{a}_{\mu\nu}F^{a\mu\nu}-\frac{\lambda}{4f}\chi F^{a}_{\mu\nu}\tilde{F}^{a\mu\nu}$

Very well motivated terms in HEP (e.g. String, SUGRA)

[cf. Chromo-natural inflation: Adshead&Wyman(2012)]

How's it work?

Adding axion-SU(2) gauge spectator sector

Axion-SU(2) gauge spectator sector

PRESENTATION **2 Key Points**

Background SU(2) field

Source GW at 1st order pert.

• $\bar{\chi}$ rolling down $V(\chi)$ \Longrightarrow Attractor $\bar{A}_i^a = \delta_i^a a A_{BG}(t)$

[Maleknejad&Erfani(2014)]

2 Key Points(1) Background SU(2) field

 \Rightarrow Source GW at 1st order pert.

• $\bar{\chi}$ rolling down $V(\chi)$ \Longrightarrow Attractor $\bar{A}_i^a = \delta_i^a a A_{BG}(t)$

• EMT of \bar{A}_i^a is isotropic \implies FRW universe

2 Key Points

1 Background SU(2) field

 \implies Source GW at 1st order pert.

• $\bar{\chi}$ rolling down $V(\chi)$ \Longrightarrow Attractor $\bar{A}_i^a = \delta_i^a a A_{BG}(t)$

• EMT of \bar{A}_i^a is isotropic \implies FRW universe

• 1st order EMT has $\bar{A}_i^a \delta A_j^a \implies h_{ij}^{\text{sourced}}$ at linear

 $t_R + t_L$

PRESENTATION

2 Key Points

(2) Huge amplification only for tensor not scalar

$\delta A_j^a = 2 \operatorname{scalar} + 2 \operatorname{vector} + 2 \operatorname{tensor}$

No instability

Either of them gets amplified

Smaller than normal case. No instability for $gA_{BG} > \sqrt{2}H$

They don't contribute to ζ unless χ becomes Curvaton.

2 Key Points

1 Background SU(2) field

Source GW at 1st order pert.

(2) Huge amplification only for tensor not scalar

Enhance r without boosting \mathcal{P}_{ζ}

Result (mild case)

Result (mild case)

Model

Preliminary

PRESENTATION

Possible obstacles

2 Spectral index: $\rho_A \rightarrow \dot{H} \rightarrow \phi \text{ EoM} \rightarrow n_s$

$$\rho_{\chi} > \rho_A > \rho_{t_R}$$

4 Backreaction:

5 Perturbativity:

 $\langle t_R t_R \rangle \rightarrow \text{EoM of } \chi, A_{BG}$

 $\langle t_R t_R \rangle$ Tree > 100p

[TF, Namba & Tada, 1707.03023]

Observation

PRESENTATION

Bad news for observationalists

Without $\mathcal{P}_{GW}^{source}$, we believed

$\rho_{\rm inf}^{1/4} \approx 10^{16} {\rm GeV} \left(\frac{r}{0.001}\right)^{1/4}$

However, the correct energy scale might be

 $\rho_{\inf}^{1/4} \approx 10^{-1} \text{GeV} \quad \text{if} \ \mathcal{P}_{GW}^{s} \gg \mathcal{P}_{GW}^{\text{vac}}$

Other observables to distinguish $\mathcal{P}_{GW}^{s} \& \mathcal{P}_{GW}^{vac}$

3 Unique signatures

 \bigcirc R Polarization $h_R \neq h_L \implies$ TB&EB correlation

\bigcirc Tensor Non-Gaussianity $\langle hhh \rangle \implies$ large B_h^{equil}

PRESENTATION

TB, EB correlation

Chiral GW induces TB & EB cross correlations

$\langle TT \rangle, \langle TE \rangle, \langle EE \rangle, \langle BB \rangle \propto \langle h_R h_R \rangle + \langle h_L h_L \rangle$ $\langle TB \rangle, \langle EB \rangle \propto \langle h_R h_R \rangle - \langle h_L h_L \rangle$

By detecting TB & EB correlations, we can distinguish $h^{(s)}$ from $h_{
m vac}$

Observation

PRESENTATION

LiteBIRD

CMB satellite mission

Will be launched in 2020s

Aims to detect $r \ge 10^{-3}$

Channel (GHz)	$\theta_{\rm FWHM}$ (amin)	$\sigma_{\rm T}(\nu) \left[\mu {\rm Kamin}\right]$	$\sigma_{\rm P}(\nu) \ [\mu {\rm Kamin}]$
40.0	69.0	0.0	36.8
50.0	56.0	0.0	23.6
60.0	48.0	0.0	19.5
68.0	43.0	0.0	15.9
78.0	39.0	0.0	13.3
89.0	35.0	0.0	11.5
100.0	29.0	0.0	9.0
119.0	25.0	0.0	7.5
140.0	23.0	0.0	5.8
166.0	21.0	0.0	6.3
195.0	20.0	0.0	5.7
235.0	19.0	0.0	7.5
280.0	24.0	0.0	13.0
337.0	20.0	0.0	19.1
402.0	17.0	0.0	36.9

Table 3: Summary of the LiteBIRD specifications. And $f_{sky} = 0.5$

Observation

PRESENTATION

S/N for TB+EB

w/ lensing effect (no delensing)

LiteBIRD instrumental noise

2% foreground contamination

S/N ratio for TB+EB with noises

Cosmic Variance limited case

Observation

PRESENTATION

S/N for TB+EB

w/ lensing effect (no delensing)

LiteBIRD instrumental noise

2% foreground contamination

TB + EB can be detected by LiteBIRD for r > 0.03.

Observation

PRESENTATION

Non-Gaussianity

Large $\langle h_R h_R h_R \rangle$ Large $\langle t_R t_R t_R \rangle$

The EoM for SU(2) gauge field is non-linear

FIG. 2. The 3D plot of the numerical result of $10^{13}(k_1k_2k_3)^2(B_h^{(i)}+B_h^{(ii)})$. Only $r_3 \leq r_2$ is shown. The bispectrum vanishes for $r_2+r_3 < 1$ by the triangle condition.

The NG shape is almost equilateral ($\cos\theta \approx 0.9$)

Observation

PRESENTATION Non-Gaussianity

Relationship btw NG and energy fraction of A_{BG}

$$f_{\rm NL}^{\rm tens} \approx \frac{125}{18\sqrt{2}} \frac{r^2}{\epsilon_B} \approx 2.5 \frac{r^2}{\Omega_A}$$

The current observational bound from Planck is

 $f_{\rm NL}^{\rm tens} = 400 \pm 1500$

It may be observed in next CMB observations!

Summary **Axion-SU(2) model** PRESENTATION Larger GW than h^{vac} can be produced $r_{obs} = r_{vac} + \gamma_{add}$ $r_{\rm obs}$ doesn't fix $ho_{\rm inf}$ Lowest $ho_{ m inf}$ can have $r=10^{-3}$ $\rho_{\rm inf}^{1/4} \ge 0.1 {\rm GeV}$ $r \propto H^2 \exp[3.6m_o]$ LiteBIRD will detect! Distinguishable w/ Polarization $h_R \neq h_L \implies$ TB&EB correlation Non-Gaussianity $\langle hhh \rangle \Longrightarrow$ large B_h^{equil} Tensor tilt $n_t \implies n_T \times -r/8$

Thank you !