Fully Relativistic Higher Order Effects in Weak Lensing using the Post-Friedmann Approximation Scheme

Hedda Gressel

Institute of Cosmology and Gravitation (ICG), University of Portsmouth Supervisors: Marco Bruni, David Bacon in collaboration with Camille Bonvin

hedda.gressel@port.ac.uk

21st annual International Conference on Particle Physics and Cosmology (COSMO-17)

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

э

Post-Friedmann Approximation Scheme (PF)	Weak Lensing 0000	Weak Lensing with Post-Friedmann Approach	Conclusion

Overview

Post-Friedmann Approximation Scheme (PF) Introduction to PF

Weak Lensing Weak Lensing

Weak Lensing with Post-Friedmann Approach WL with PF Approximation

Conclusion

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

ICG

Post-Friedmann Approximation Scheme (PF) •0000 Introduction to PF
 Weak Lensing
 Weak Lensing with Post-Friedmann Approach
 Conclusion

 0000
 0000
 Conclusion
 Conclusion

< ロ > < 同 > < 回 > < 回 > < □ > <

Motivation for the PF Approach I

we study the growth of large-scale structure in two different ways:

larger, linear scales: fully relativistic perturbation schemes

smaller, non-linear scales: Newtonian methods; N-body simulations

 Weak Lensing
 Weak Lensing with Post-Friedmann Approach
 Conclusion

 0000
 0000
 0000
 Conclusion

Motivation for the PF Approach II

Current and future surveys will provide a great amount of *precise data*, which largely will come from *non-linear scales* of the Universe.

\Rightarrow Will the Newtonian Approximation be good enough for non-linear structure formation?

► e.g. Euclid target: N-body simulations with 1% accuracy what if *relativistic corrections are of order* O(1%)?

PF Approximation includes all scales: bridging the fully relativistic perturbative scheme on **large**, **linear scales** with the Newtonian approximation on **small**, **non-linear scales**.

 Weak Lensing
 Weak Lensing with Post-Friedmann Approach
 Conclusion

 0000
 0000
 0000
 Conclusion

What is the Post-Friedmann Approach?

- ▶ post-Newtonian (PN) type approximation for cosmology \rightarrow expansion in $1/c^2$
- \blacktriangleright instead of flat background \rightarrow FLRW background
- only peculiar velocities are assumed to be small:
 ṙ = Hr + v with v ≪ c and r = ax
 → no restriction over scale via velocity
- density contrast δ can be > 1

(Milillo et al. 2015)

3

Post-Friedmann Approximation Scheme (PF) 00000 Introduction to PF

The Scalar, Vector, and Tensor Perturbations in PF

Weak Lensing

Weak Lensing with Post-Friedmann Approach

イロン 不同 とくほう イロン

We assume Poisson gauge, $B_{,i}^{i} = 0$, and $h_{j,i}^{i} = h_{i}^{i} = 0$.

$$g_{00} = -\left[1 - \frac{2U_N}{c^2} + \frac{1}{c^4} \left(2U_N^2 - 4U_P\right)\right] + \mathcal{O}\left(\frac{1}{c^6}\right)$$

$$g_{0i} = -\frac{a}{c^3}B_i^N - \frac{a}{c^5}B_i^P + \mathcal{O}\left(\frac{1}{c^7}\right)$$

$$g_{ij} = a^2\left[\left(1 + \frac{2V_N}{c^2} + \frac{1}{c^4} \left(2V_N^2 + 4V_P\right)\right)\delta_{ij} + \frac{1}{c^4}h_{ij}\right] + \mathcal{O}\left(\frac{1}{c^6}\right)$$

 the scalar potentials and vector potential are split into leading order Newtonian components (U_N, V_N, and B^N_i) and post-Friedmann components (U_P, V_P, and B^P_i)

(Milillo et al. 2015)

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

Conclusion

Weak Lensing with Post-Friedmann Approach Conclusion

ヘロト ヘアト ヘビト ヘビト

Newtonian and relativistic limit

 at leading order in Einstein's field equations and conservation equations: reduces to fully non-linear Newtonian cosmology

Weak Lensing

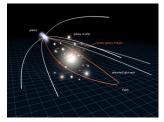
▶ defining resummed variables (such as φ_P := −U_N − ²/_{c²}U_P) and linearising Einstein's field equations: reduces to standard first-order perturbation theory

Weak Lensing with a Post-Friedmann Approximation

Weak Lensing •000 Weak Lensing with Post-Friedmann Approach Conclusion

Weak Lensing

Gravitational Lensing (GL)



(a) Copyright: NASA, ESA and L. Calcada

(b) Galaxy cluster Abell 370, Copyright: NASA, ESA, the Hubble SM4 ERO Team and ST-ECF

イロン 不同 とくほう イロン

Condition for GL: δ can be > 1, bg: FLRW, $\mathbf{v}_{pec} \ll 1$

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

э

Weak Lensing

Weak Lensing with Post-Friedmann Approach Conclusion

Weak Lensing

Weak Lensing (WL)

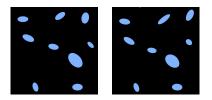


Figure: Credit: Matthew Withers

cosmic shear: lensing by the large-scale structure in the universe

- possible constraints on the equation of state of dark energy or modified gravity models
- study of distribution of dark matter

My goal is to calculate the shear and the convergence in a PF context.

Hedda Gressel

Weak Lensing

Weak Lensing with Post-Friedmann Approach Conclusion

Weak Lensing

Weak Lensing (WL)

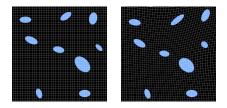


Figure: Credit: Matthew Withers

cosmic shear: lensing by the large-scale structure in the universe

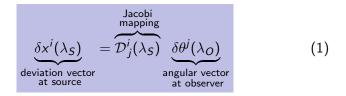
- possible constraints on the equation of state of dark energy or modified gravity models
- study of distribution of dark matter

My goal is to calculate the shear and the convergence in a PF context.

Hedda Gressel

Post-Friedmann Approximation Scheme (PF)	Weak Lensing 00●0	Weak Lensing with Post-Friedmann Approach	Conclusion
Weak Lensing			

Convergence and Shear



with

$$\mathcal{D}_{j}^{i} \propto \begin{pmatrix} 1 - \kappa - \gamma_{1} & -\gamma_{2} \\ -\gamma_{2} & 1 - \kappa + \gamma_{1} \end{pmatrix}$$
(2)

and κ and γ being the **convergence** and **shear**, respectively.

Hedda Gressel

Post-Friedmann Approximation Scheme (PF)	Weak Lensing	Weak Lensing with Post-Friedmann Approach	Conclusion
00000	0000	0000	
Weak Lensing			

Evolution equation for Jacobi mapping

This evolution equation is derived from the geodesic deviation equation mapped on the screen-space.

$$\frac{d^2}{d\chi^2}\mathcal{D}_{ab} + \frac{1}{k^0}\frac{dk^0}{d\chi}\frac{d}{d\chi}\mathcal{D}_{ab} = \frac{1}{(k^0)^2}\mathcal{R}_a^c\mathcal{D}_{cb}$$
(3)

with $\chi = c(\eta_0 - \eta)$, $k^{\mu} = \frac{dx^{\mu}}{d\lambda}$ and λ being a affine parameter, and $\mathcal{R}_{ab} = R_{\alpha\gamma\delta\beta}k^{\gamma}k^{\delta}n_a^{\alpha}n_b^{\beta}$

(Bernardeau et al, 2010)

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

Weak Lensing

Weak Lensing with Post-Friedmann Approach • 000

Conclusion

WL with PF Approximation

Solution for the Jacobi mapping up to $\mathcal{O}\left(1/c^3
ight)$

$$\mathcal{D}_{ab} = \chi_{S} \left[1 + \frac{V_{N}}{c^{2}} + \frac{2}{c^{2}\chi_{S}} \int_{0}^{\chi_{S}} d\chi \left(-2W_{N} + (\chi_{S} - \chi) \dot{W}_{N} \right) \right] \delta_{ab} + \frac{2}{c^{2}} \int_{0}^{\chi_{S}} d\chi \left(\chi_{S} - \chi \right) \chi e_{a}^{i} e_{b}^{j} W_{N,ij} - \frac{1}{c^{3}} \int_{0}^{\chi_{S}} B_{i,j} \bar{k}^{i} \bar{k}^{j} \delta_{ab} + \frac{1}{c^{3}} \int_{0}^{\chi_{S}} d\chi \left(\chi_{S} - \chi \right) \chi e_{a}^{i} e_{b}^{j} \left(\frac{dB_{i,(j)}}{d\chi} + \frac{dB_{j,i}}{d\chi} - (k^{\alpha} B_{\alpha})_{,ij} \right)$$
with $W_{X} = \frac{1}{2} \left(U_{X} + V_{X} \right)$ and $X = N, P$.

resembles the outcome of standard perturbation theory, (\rightarrow derived from the purely geometric geodesic deviation equation) but the physical meaning differs \rightarrow vality on small scales

(cf. Bernardeau et al, 2010)

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

э

Post-Friedmann Approximation Scheme (PF)	Weak Lensing 0000	Weak Lensing with Post-Friedmann Approach ○●○○	Conclusion
WL with PF Approximation			

\mathcal{D}_{ab} in terms of the redshift:

At this order, only the convergence is afffected by redshift pertrubations

$$\begin{split} \kappa &= \frac{V_N}{c^2} + \frac{2}{c^2} \int_0^{\chi_S} d\chi \left(-2W_N + (\chi_S - \chi) \dot{W}_N \right) + \\ &+ \frac{2}{c^2} \int_0^{\chi_S} d\chi \left(\chi_S - \chi \right) \chi n^i n^j W_{N,ij} - \frac{1}{c^3} \int_0^{\chi_S} B_{i,j} \bar{k}^i \bar{k}^j + \\ &+ \frac{1}{c^3} \int_0^{\chi_S} d\chi \left(\chi_S - \chi \right) \chi n^i n^j \left(\frac{dB_{i,(j)}}{d\chi} + \frac{dB_{j,i)}}{d\chi} - (k^\alpha B_\alpha)_{,ij} \right) + \\ &+ \left(1 + \frac{1}{\mathcal{H}\chi_S} \right) \left[\frac{2}{c^2} \int_0^{\chi_S} \dot{W} d\chi + \frac{1}{c^3} \left(B_i \bar{k}^i - \int_0^{\chi_S} B_{i,j} \bar{k}^i \bar{k}^j \right) \right] \end{split}$$

(cf. Bonvin, 2014)

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Weak Lensing

Weak Lensing with Post-Friedmann Approach 0000

Conclusion

WL with PF Approximation

Contributions from Frame-Dragging Potential $B_{N,i}$

- ► B_{N i} doesn't influence the matter dynamics, but affects photon geodesics
- B_{Ni} contributes to the convergence and shear
- B_{N i} is sourced by the Newtonian quantities ρ v_i (see Einstein field equations with G⁰_i)

(cf Thomas et al. 2015 and Bruni et al, 2013)

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

Post-Friedmann Approximation Scheme (PF)	Weak Lensing 0000	Weak Lensing with Post-Friedmann Approach	Conclusion
WL with PF Approximation			
Order $\mathcal{O}\left(\frac{1}{c^4}\right)$			

Stay tuned!

Hedda Gressel

Weak Lensing with a Post-Friedmann Approximation

Post-Friedmann	Approximation	Scheme	(PF)
00000			

Conclusion

Post-Friedmann approximation:

- the PF approximation is valid on linear and non-linear scales :
 - at leading order: reduces to fully non-linear Newtonian cosmology
 - ▶ if linearised: reduces to standard first-order perturbation theory
 - ullet ightarrow favourable approximation scheme for a weak lensing analysis

Weak Lensing with Post-Friedmann approximation:

- convergence and shear are resemble the convergence and shear in SPT, but differ in the physical interpretation:
 - validity on all scales
 - WL: coupling of small scales to large scales, e.g. correlation for the shear for two galaxies that are far apart but almost aligned w.r.t. the line of sight
- frame dragging effect sourced by Newtonian quantities ,

Hedda Gressel

Conclusion

Post-Friedmann Approximation Scheme (PF) 00000	Weak Lensing 0000	Weak Lensing with Post-Friedmann Approach	Conclusion
Future Work			

ICG

- shear and converggene at higher orders
- calculation of the two-point function
- comparing with numerical results

Post-Friedmann	Approximation	Scheme	(PF)
00000			

・ロン ・四 と ・ ヨ と ・ ヨ と …

э

ICG

Thank you!

Hedda Gressel