Kinetic decoupling of dark matter: how it affects the relic abundance

Ayuki Kamada (IBS-CTPU) 16 기초과학연구원

Mainly based on <u>AK</u>, Hee Jung Kim, Hyungjin Kim, and Sekiguchi, arXiv:1707.09238

Aug. 30, 2017 @ COSMO-17

Talk Plan

Part 1: Particle dark matter

- stability ↔ symmetry

 Z_2 symmetry \rightarrow Weakly Interacting Massive Particle (WIMP)

- relic abundance \leftrightarrow production mechanism

 Z_2 symmetry \rightarrow pair annihilation

Part 2: Beyond WIMP - a larger symmetry

Strongly Interacting Massive Particle (SIMP)
 3→2 process
 semi-annihilation

Part 3: Impacts of the kinetic decoupling on the chemical freeze-out - co-evolution of the dark matter temperature and number density

Part 4: Discussion

- implications for the structure formation of the Universe
- other prospects

Evidences of dark matter

cosmic microwave background (CMB) anisotropies

Observations of the Universe (from dwarf galaxies to CMB) has been suggesting the existence of a new form of matter: dark matter

Identity of dark matter

We do not know the identity, but know several properties

Stability

How to stabilize the dark matter particle

It took a half century to understand it

Minimal phenomenological approach: new Z_2 symmetry under which SM particles: even, DM particle: odd χ

Another half century?

Quantum gravity violates any global symmetry? Kallosh et al., PRD, 1995

Relic abundance

DM particles should be produced in the early Universe and be left with the **observed relic abundance**

new Z_2 symmetry \rightarrow pair creation & pair annihilation

Direct detection

Indirect detection

The thermal WIMP mass has been bounded from below: $m_{\rm DM} \gtrsim 100 \, {\rm GeV}$

Magic and Fermi-LAT Collaborations, JCAP, 2016

Collider experiment

The sparticle masses have been pushed up to $\sim 10 \,\mathrm{TeV}$ \rightarrow look for a new paradigm?

A larger symmetry for the stability

Strongly Interaction Massive Particles (SIMPs) - **hidden pions** in a hidden confinement sector, which are described by a non-linear sigma model w/ an unbroken flavor symmetry: G/H Hochberg *et al.*, PRL, 2015

Unbroken flavor symmetry \rightarrow the stability of pions Two parameters in pion phenomenology m_{π} : pion mass & f_{π} : pion decay constant

SIMP relic density

k

Wess-Zumino-Witten term \rightarrow number-changing interaction:

$$\mathcal{L}_{WZW} = \frac{k}{15\pi^2 f_{\pi}^5} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left[\pi \partial_{\mu}\pi \partial_{\nu}\pi \partial_{\rho}\pi \partial_{\sigma}\pi\right] \xrightarrow{\text{Wess et al., PLB, 1971}}$$

- reproduce the quantum anomaly of G in the ultraviolet theory uarks): $k = 2N_c$ in a QCD-like theory

$$\sum_{\mathbf{W}} \frac{\Omega_{\pi} h^2 = \Omega_{\rm DM} h^2 \ \mathbf{\&} \ \sigma_{\rm self} / m_{\rm DM} \sim 0.1 - 10 \, {\rm cm}^2 / {\rm g} }{\mathbf{W} / m_{\pi} \sim f_{\pi} \sim 0.1 - 1 \, {\rm GeV} }$$

Semi-annihilation to an axion-like particle (ALP)

Assumption in Boltzmann equations

kinetic equilibrium $\leftrightarrow T_{\rm DM} = T \propto 1/a$

Kinetic interaction of WIMPs

Importance of SIMP kinetic interaction

solely w/ 3→2 process ↔ isolated DM fluid

Carlson *et al.,* APJ, 1992

→ $T_{\rm DM} \propto 1/\ln a$ (from comoving entropy density conservation) & $n_{\rm DM}/s \propto 1/\ln a$ until the decoupling of 3→2 process

→ the relic density of dark matter!! [Kuflik *et al.*, PRL, 2016]

Freeze-out driven by the semi-annihilation

Co-evolution of the temperature and number density

Warmness

18

<u>Summary</u>

Minimal Z_2 symmetry to stabilize particle DM \rightarrow WIMPs Hidden flavor symmetry stabilizes hidden pions (SIMPs)

Sub-GeV pion mass and comparable pion decay constant/ electroweak scale ALP decay constant

 \rightarrow correct relic abundance through the 3 \rightarrow 2 process/semiannihilation and large cross section to produce sizable halo cores

Kinetic equilibration has nothing to do with number-changing reactions in SIMPs unlike WIMPs

Semi-annihilating SIMPs w/o elastic scatterings with SM particles \rightarrow co-evolution of the DM temperature and number density $T_{\rm DM} \propto 1/a$ after the freeze-out due to the heating though the semi-annihilation

Thank you for your attention

Possible kinetic interactions (portals)

Kinetic mixing portal: gauging abelian part of the unbroken symmetry

Lee et al., PLB, 2015 Hochberg et al., JHEP, 2016

Higgs portal: introducing a hidden Higgs, VEV of which provides a mass to quarks (and pions) <u>AK, Yamada, Yanagida, and Yonekura, PRD, 2016</u>

Axion-like particle (ALP) portal: introducing an axion-like particle, which has anomalous couplings both to a SM gauge field and to the hidden gauge field <u>AK, Hyungjin Kim, and Sekiguchi, PRD, 2017</u>

Higgs portal

Off-shell exchange of the hidden Higgs $(s) \rightarrow$ not sufficiently rapid to keep the DM pions in kinetic equilibrium with the SM plasma

The decay and inverse decay of the hidden Higgs keeps it in thermal equilibrium \rightarrow Thermalized hidden Higgses: $\pi s \rightarrow \pi s$ elastic scattering \rightarrow the kinetic equilibration of the pions with the SM plasma

Lagrangian density w/
$$G = SU(N_f)_L \times SU(N_f)_R$$
 and $H = SU(N_f)_V$?
 $\mathcal{L}_{hid} = \mathcal{L}_0 + \mathcal{L}_{CP} + \mathcal{L}_{CPV} + \mathcal{L}_{WZW}$
 $\mathcal{L}_0 = \frac{1}{2} (\partial_\mu \pi^a)^2 + \frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} m_\pi^2 (\pi^a)^2 - \frac{1}{2} m_\phi^2 \phi^2$
 $\mathcal{L}_{CP} = \frac{m_\pi^2}{4N_f^2 f^2} (\pi^a)^2 \phi^2 - \frac{1}{6f_\pi^2} r_{abcd} (\partial_\mu \pi^a) (\partial^\mu \pi^b) \pi^c \pi^d$
 $+ \frac{m_\pi^2}{6N_f f_\pi f} d_{abc} \pi^a \pi^b \pi^c \phi + \frac{m_\pi^2}{12f_\pi^2} c_{abcd} \pi^a \pi^b \pi^c \pi^d$
 $\mathcal{L}_{CPV} = \tan (\theta_H / N_f) \left[\frac{m_\pi^2}{2N_f f} \phi(\pi^a)^2 + \frac{m_\pi^2}{6f_\pi} d_{abc} \pi^a \pi^b \pi^c - \frac{m_\pi^2}{30f_\pi^3} \pi^a \pi^b \pi^c \pi^d \pi^e c_{abcde} \right]$

Viable parameter region in a Higgs-portal model

To suppress $\pi\pi \to ss$ annihilation, we take the hidden Higgs mass heavier than the pion mass: $r=m_s/m_\pi\gtrsim 1$

Viable parameter region will be covered by higher-energy beam dump experiments such as the SHiP experiment and the low-threshold DM direct detection experiments such as NEWS and SNOLAB

ALP portal

Off-shell exchange of the ALP (ϕ): the elastic scattering is not sufficiently rapid to keep the DM pions in kinetic equilibrium with the SM plasma

The decay and inverse decay of the ALP keeps it in thermal equilibrium Thermalized (on-shell) ALP: $\pi\phi \rightarrow \pi\phi$ elastic scattering \rightarrow Not sufficiently rapid, too ONLY $\pi\pi \rightarrow \pi\phi$ semi-annihilation is available

Constraints on semi-annihilation to an ALP

Indirect searches of DM semi-annihilation constrain its cross section severely

When both the masses are degenerate, $m_{\pi} = m_{\phi}$, the semiannihilation cross section is proportional to the relative velocity: $\langle \sigma_{\text{semi}} v_{\text{rel}} \rangle = \langle \sigma_{\text{semi}} v_{\text{rel}} \rangle_{\text{fo}} (v_{\text{rel}}/v_{\text{rel, fo}})$ where $v_{\text{rel, fo}} \simeq 0.5 \simeq 2 \times 10^5 \text{ km/s}$

Viable parameter region in an ALP-portal model

AK, Hyungjin Kim, and Sekiguchi, PRD, 2017

Viable parameter region will be covered by higher-energy beam dump experiments such as the ShiP experiment

Asymptotic temperature

Cold Dark Matter?

Small scale matter density fluctuations, especially their deviations from the ΛCDM model, contain imprints of the nature of DM

Small scale crisis I

When *N*-body simulations in the <u>ACDM</u> model and observations are compared, problems appear at (sub-)galactic scales: **small scale crisis**

Small scale crisis II

cusp vs core problem

N-body (DM-only) simulations in the ∧CDM model → UNIVERSAL DM profile independent of halo size: NFW profile

Small scale crisis III

N-body (DM-only) simulations in ∧CDM model → ~10 subhalos with deepest potential wells in Milky Way-size halos DO NOT HOST observed counterparts (dwarf spheroidal galaxies)

Possible solution I

- heating from ionizing photons - ionizing photons emitted and spread around reionization of the Universe heat and evaporate gases

- mass loss by supernova explosions - supernova explosions blow gases from inner region \rightarrow DM redistribute along shallower potential

Possible solution II

Above Discussions are based on N-body (DM-only) simulations in the Λ CDM model

alternative models ↔ nature of DM

 warmness - thermal velocities induce pressure of DM fluid and prevent gravitational growth (Jeans analysis)

- interactions with relativistic particles - DM fluid couples to relativistic particles in a direct/indirect manner

- **self-interaction** - induced heat transfer of DM fluid heats DM particles in inner region and flatten inner profile

Concentration-mass relation

Rephrasing cusp vs core problem to emphasize that not only the slope but also the WHOLE MASS DISTRIBUTION should be examined.

Dark matter self-interaction

SIDM structure formation starts with the same linear (initial) matter power spectra as CDM, but self-interactions become important as structure formation proceeds $\leftrightarrow \rho$ increases

SIDM halo - velocity dispersion

SIDM halo - mass density

Unexpected diversity problem

The inner mass deficit is **NOT UNIVERSAL**, but should be elaborated in a **GALAXY-BY-GALAXY** manner even with V_{max} fixed.

Origin of the diversity

Unexpected diversity problem??

For a given cross section (σ/m=3 cm²/g in the following), SIDM halo profile is still **DEFINITE** and characterized by only one parameter V_{max}

Scatter in distributions of the baryons even in similar-size halos!!

Influence of the baryons

Case study I

In **MASSIVE** spiral galaxies,

stellar disks can change WHOLE SIDM MASS DISTRIBUTIONS

Case study II

SIDM halo profile reflects HOW CONTRACTED the hosted stellar disk is even with similar $V_{\rm max}$ AND M_*

More samples

Massive spiral galaxies, **GENERALLY**, make SIDM halos VIOLATE the concentration-mass relation

Case study III

Highlighted in the New Scientist magazine

THIS WEEK 7 December 2016

Dark matter that talks to itself could explain galaxy mystery

Spinning puzzle Robert Gendler/Science Photo Library

By Shannon Hall

Not all rotation curves look alike – before they reach that characteristic plateau, some rise gradually, and others rise rapidly. But WIMP models struggle to explain this. Also, there has been no direct evidence of WIMPs, despite decades of searching. So <u>Ayuki Kamada</u> at the

Particle physics models I

The constraints from galaxy clusters likely imply that dark matter self-interaction should **DIMINISH WITH INCREASING VELOCITY**, even though not necessarily so far

+ interestingly strong lensing of galaxy clusters may support SIDM with a smaller cross section $\sigma/m=0.1 \text{ cm}^2/g$

5000

Lyman-alpha forest as a probe of matter distribution

Mass fraction of the hot component

