Reconstruction of the Scalar Field Potential in Inflation with a Gauss-Bonet term

Seoktae Koh
Jeju National University, Korea

COSMO 17,
Aug 28, 2017 @ Paris
Collaborated with G. Tumurtusshaa
based on arXiv: 1404.6096, 1610.04360

Outline

(1) Introduction
(2) Inflation with a Gauss-Bonnet term

3 Reconstruction of the potential and GB coupling

4 Blue tilted tensor spectrum
(5) Summary

Introduction

- If we consider higher order (quantum) corrections to general relativity or fundametal theory (string theory), the Gauss-Bonnet term seems to be qunite natural.

$$
R_{G B}^{2}=R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-R_{\mu \nu} R^{\mu \nu}+R^{2}
$$

- It seems to be necessary to consider inflation with the Gauss-Bonnet term.
- Inflation with a Gauss-Bonnet term was studied in many literature and their predictions were found to be consistent with the observations
- In this talk, we try to reconstruct the inflaton potential and the Gauss-Bonnet coupling by using observationally favored configuratoins of the observable quantities.

Planck 2015 results

- tilt of the curvature power spectrum

$$
\mathrm{n}_{\mathrm{s}}=0.9655 \pm 0.0062(68 \% \text { CL, PlanckTT }+ \text { low } \mathrm{P})
$$

- running of the spectral index

$$
\frac{\mathrm{d} \ln \mathrm{n}_{\mathrm{s}}}{\mathrm{~d} \ln \mathrm{k}}=-0.0084 \pm 0.0082(68 \% \text { CL, PlanckTT }+ \text { low } \mathrm{P})
$$

- upper bound on r

$$
r_{0.002}<0.10(95 \% \text { CL, PlanckTT }+ \text { lowP })
$$

implications for selected inflationary models

- power law potentials

$$
\mathrm{V}(\phi)=\lambda M_{\mathrm{pl}}^{4}\left(\frac{\phi}{M_{\mathrm{pl}}}\right)^{n}
$$

- predictions

$$
\begin{aligned}
n_{s}-1 & =-\frac{2(n+2)}{4 N_{*}+n} \\
r & =\frac{16 n}{4 N_{*}+n}
\end{aligned}
$$

- R^{2} inflation: potential in Einstein frame through the conformal transformation

$$
V(\phi)=\Lambda^{4}\left(1-e^{-\sqrt{2 / 3} \phi / M_{p l}}\right)^{2}
$$

- slow-roll predicitions

$$
\mathrm{n}_{\mathrm{s}}-1 \approx-\frac{2}{\mathrm{~N}^{\prime}}, \quad \mathrm{r} \approx \frac{12}{\mathrm{~N}^{2}}
$$

Outline

(1) Introduction
(2) Inflation with a Gauss-Bonnet term

3 Reconstruction of the potential and GB coupling

4 Blue tilted tensor spectrum
(5) Summary

Inflation with a Gauss-Bonnet term

- action with a Gauss-Bonnet term

$$
S=\int d^{4} \chi \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} R-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{v} \phi-V(\phi)-\frac{1}{2} \xi(\phi) R_{G B}^{2}\right]
$$

- flat Friedmann-Lemaitre-Robertson-Walker (FLRW) universe

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d r^{2}+r^{2} d \Omega^{2}\right)
$$

- equations of motion

$$
\begin{aligned}
\mathrm{H}^{2} & =\frac{\kappa^{2}}{3}\left[\frac{1}{2} \dot{\phi}^{2}+\mathrm{V}+12 \dot{\xi} \mathrm{H}^{3}\right] \\
\dot{\mathrm{H}} & =-\frac{\kappa^{2}}{2}\left[\dot{\phi}^{2}-4 \ddot{\xi} \mathrm{H}^{2}-8 \dot{\xi} \mathrm{H} \dot{H}+4 \dot{\xi} \mathrm{H}^{3}\right] \\
\ddot{\phi} & +3 \mathrm{H} \dot{\phi}+\mathrm{V}^{\prime}+12 \xi^{\prime} \mathrm{H}^{2}\left(\dot{\mathrm{H}}+\mathrm{H}^{2}\right)=0
\end{aligned}
$$

Solw-roll approximations

- usual slow-roll conditions

$$
\dot{\phi}^{2} \ll \mathrm{~V}, \quad \ddot{\phi} \ll 3 \mathrm{H} \dot{\phi}
$$

additional slow-roll conditions

$$
4 \dot{\xi} \mathrm{H} \ll 1, \quad \ddot{\xi} \ll \dot{\xi} H
$$

- slow-roll equations of motion

$$
\begin{aligned}
& H^{2} \simeq \frac{\kappa^{2}}{V} \\
& \dot{H} \simeq-\frac{\kappa^{2}}{2}\left(\dot{\phi}^{2}+4 \dot{\dot{\xi}} H^{3}\right) \\
& 3 H \dot{\phi}+V_{\phi}+12 \xi^{\prime} H^{4} \simeq 0
\end{aligned}
$$

slow-roll approximations

- slow-roll parameters

$$
\begin{aligned}
\epsilon & =-\frac{\dot{H}}{H^{2}}=\frac{1}{2 \kappa^{2}} \frac{V^{\prime}}{V} Q \\
\eta & =\frac{\ddot{H}}{H \dot{H}}=-\frac{1}{\kappa^{2}}\left(\frac{V^{\prime \prime}}{V^{\prime}} Q+Q^{\prime}\right) \\
\delta_{1} & =4 \kappa^{2} \dot{\xi} H=-\frac{4 \kappa^{2}}{3} \xi^{\prime} V Q \\
\delta_{2} & =\frac{\ddot{\xi}}{\dot{\xi} H}=-\frac{1}{\kappa^{2}}\left(\frac{\xi^{\prime \prime}}{\xi^{\prime}} Q+\frac{V^{\prime}}{2 V} Q+Q^{\prime}\right)
\end{aligned}
$$

where

$$
\mathrm{Q}=\frac{\mathrm{V}^{\prime}}{\mathrm{V}}+\frac{4}{3} \mathrm{~K}^{4} \xi^{\prime} \mathrm{V}
$$

- amount of inflationary expansions

$$
\mathrm{N}=\int_{\mathrm{t}}^{\mathrm{t}_{e}} \mathrm{Hdt} \simeq \int_{\phi_{e}}^{\phi} \frac{\kappa^{2}}{\mathrm{Q}} \mathrm{~d} \phi
$$

Observable quantities

$$
\begin{aligned}
\mathrm{n}_{\mathrm{s}}-1 & =-2 \epsilon-\frac{2 \epsilon(2 \epsilon+\eta)-\delta_{1}\left(\delta_{2}-\epsilon\right)}{2 \epsilon-\delta_{1}} \\
\mathfrak{n}_{\mathrm{t}} & =-2 \epsilon \\
\mathrm{r} & =8\left(2 \epsilon-\delta_{1}\right)
\end{aligned}
$$

$V(\phi) \sim \phi^{n}, \xi(\phi) \sim \phi^{-n}$
(Z. Guo, D. Schwarz, 2010)

$$
V(\phi)=V_{0} \phi^{n}, \quad \xi(\phi)=\xi_{0} \phi^{-n}
$$

$$
\Longrightarrow \mathrm{V}(\phi) \xi(\phi)=\text { const }
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{s}}-1 & =-\frac{2(\mathrm{n}+2)}{4 \mathrm{~N}+\mathrm{n}} \\
\mathrm{r} & =\frac{16 \mathrm{n}(1-\alpha)}{4 \mathrm{~N}-\mathrm{n}}
\end{aligned}
$$

where $\alpha=\frac{4}{3} V_{0} \xi_{0}$.

Figure: $\mathrm{n}=2$

$$
V(\phi) \sim \phi^{n}, \xi(\phi) \sim e^{-\lambda \phi}
$$

(P. Jiang, J. HU, Z. Guo, 2013)

$$
\begin{aligned}
\mathrm{V}(\phi)= & \mathrm{V}_{0} \phi^{\mathrm{n}}, \quad \xi(\phi)=\xi_{0} \mathrm{e}^{-\lambda \phi} \\
\mathrm{n}_{\mathrm{s}}-1= & \phi^{-2}[-\mathrm{n}(\mathrm{n}+2) \\
& \left.+\alpha \lambda e^{-\lambda \phi} \phi^{\mathrm{n+1}}(2 \lambda \phi-\mathrm{n})\right] \\
\mathrm{r}= & 8 \phi^{-2}\left(\mathrm{n}-\alpha \lambda e^{-\lambda \phi} \phi^{\mathrm{n}+1}\right)
\end{aligned}
$$

Figure: $\mathrm{n}=2$

$V(\phi), \xi(\phi) \sim \phi^{n}$

(SK, W. Lee, B. Lee, G. Tumurtushaa, 2014)

$$
V(\phi)=V_{0} \phi^{n}, \quad \xi(\phi)=\xi_{0} \phi^{n}
$$

$$
\begin{aligned}
n_{s}-1 & =-\frac{n+2}{2 N}+\frac{n(3 n+2)(2 n N)^{n} \alpha}{2(1+n) N} \\
r & =\frac{4 n}{N}+\frac{4 n(2 n+1)(2 n N)^{n} \alpha}{(1+n) N}
\end{aligned}
$$

Figure: $\mathrm{n}=2$
where $\alpha=\frac{4}{3} V_{0} \xi_{0}$

Outline

(1) Introduction
(2) Inflation with a Gauss-Bonnet term
(3) Reconstruction of the potential and GB coupling

4 Blue tilted tensor spectrum
(5) Summary

Strategy

- Write the observable quantities in terms of N

$$
\mathrm{N} \simeq \int_{\phi_{e}}^{\phi} \frac{\kappa^{2}}{\mathrm{Q}} \mathrm{~d} \phi, \quad \mathrm{Q}=\frac{\mathrm{V}^{\prime}}{\mathrm{V}}+\frac{4}{3} \kappa^{4} \xi^{\prime} \mathrm{V}
$$

$$
\begin{aligned}
n_{s}-1 & \approx-2 \epsilon-\frac{2 \epsilon(2 \epsilon+\eta)-\delta_{1}\left(\delta_{2}-\epsilon\right)}{2 \epsilon-\delta_{1}} \\
r & \approx 8\left(2 \epsilon-\delta_{1}\right), \\
n_{t} & \approx-2 \epsilon
\end{aligned}
$$

Strategy

- Write the observable quantities in terms of N

$$
\mathrm{N} \simeq \int_{\phi_{e}}^{\phi} \frac{\kappa^{2}}{\mathrm{Q}} \mathrm{~d} \phi, \quad \mathrm{Q}=\frac{\mathrm{V}^{\prime}}{\mathrm{V}}+\frac{4}{3} \kappa^{4} \xi^{\prime} \mathrm{V}
$$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{s}}(\mathrm{~N})-1 & \approx\left[\ln \frac{\mathrm{Q}^{(N)}}{\mathrm{V}}\right]_{\mathrm{N}} \\
\mathrm{r}(\mathrm{~N}) & \approx 8 \mathrm{Q}^{(\mathrm{N})} \\
\mathrm{n}_{\mathrm{t}}(\mathrm{~N}) & \approx-\frac{\mathrm{V}_{\mathrm{N}}}{\mathrm{~V}}
\end{aligned}
$$

where $Q^{(N)}=\frac{V_{N}}{V}+\frac{4}{3} \kappa^{4} \xi_{N} V$

Strategy

- Solving in terms of $V(N)$ and $\xi(N)$,

$$
\begin{aligned}
& V(N)=\frac{1}{8 c_{1}} r(N) e^{-\int\left[n_{s}(N)-1\right] d N} \\
& \xi(N)=\frac{3}{4 \kappa^{4}}\left[\frac{1}{V(N)}+\int \frac{r(N)}{8 V(N)} d N+c_{2}\right]
\end{aligned}
$$

- Finally, we obtain by replacing N with ϕ

$$
V(\phi), \quad \xi(\phi)
$$

Inverse Problem

General expressions from Planck 2015

$$
\begin{aligned}
\mathrm{n}_{\mathrm{s}}-1 & =-\frac{\beta}{\mathrm{N}+\alpha^{\prime}} \\
\mathrm{r} & =\frac{\mathrm{q}}{\mathrm{~N}^{p}+\gamma \mathrm{N}+\alpha}
\end{aligned}
$$

Inverse Problem, $\gamma=1$

$$
\gamma=1, \beta=p=2, q=8
$$

(T. Chiba, 2015)

$$
\begin{aligned}
\mathrm{V}(\phi) & =\mathrm{c}_{1} \tanh ^{2}\left(\frac{1}{2} \kappa(\phi-\mathrm{C})\right) \\
\xi(\phi) & =\frac{3}{4 \kappa^{4}}\left(c_{1}-c_{2}\right)
\end{aligned}
$$

Since $\xi(\phi) \sim$ const., the Gauss-Bonnet term does not contribute to the background dynamics.

Inverse Problem, $\gamma=0$

$$
p=1
$$

$$
\begin{aligned}
& V(\phi)=\frac{8}{8 c_{1}} \mathcal{F}(\phi), \\
& \xi(\phi)=\frac{3}{4 \kappa^{4}}\left[\frac{q+8(1-\beta)}{q(1-\beta)} \frac{1}{\mathcal{F}(\phi)} c_{1}+c_{2}\right] \\
& \mathcal{F}(\phi) \equiv\left(\alpha+\frac{2}{q} \kappa^{2} \phi^{2}+\sqrt{\frac{8 \alpha}{q}} \kappa \phi\right)^{\beta-1}
\end{aligned}
$$

Inverse Problem, $\gamma=0$

Figure: $\alpha=1 / 2, \beta=2, c_{1}=1, c_{2}=0$

- $\mathrm{V}(\phi) \xi(\phi) \sim$ const
- reproduce (Z. Guo and M. Schwarz, 2010) model

Inverse Problem, $\gamma=0$

$$
p=2
$$

$$
\begin{aligned}
& V(\phi)=\frac{q}{8 c_{1} \alpha} \operatorname{sech}^{2} \tilde{\phi} \mathcal{F}(\tilde{\phi})^{\beta} \\
& \xi(\phi)=\frac{3}{4 \kappa^{4}}\left[\frac{q \mathcal{F}(\tilde{\phi})+8(1-\beta) \alpha \cosh ^{2} \tilde{\phi}}{q(1-\beta) \mathcal{F}^{\beta}(\tilde{\phi})} c_{1}+c_{2}\right]
\end{aligned}
$$

where $\tilde{\phi}=\sqrt{\frac{8}{q}} \kappa \phi$ and $\mathcal{F}(\tilde{\phi})=\alpha+\sqrt{\alpha} \sinh \tilde{\phi}$

Inverse Problem, $\gamma=0$

$$
p=2, \alpha \ll 1, c_{2}=0
$$

$$
\begin{aligned}
& V(\phi) \sim \tanh ^{2} \tilde{\phi} \\
& \xi(\phi) \sim-\frac{3 c_{1}}{4 \sqrt{\alpha} \kappa^{4}} c \operatorname{sch} \tilde{\phi}
\end{aligned}
$$

Figure: $q=16, \beta=2, c_{1}=1, c_{2}=0$

Outline

(1) Introduction
(2) Inflation with a Gauss-Bonnet term

3 Reconstruction of the potential and GB coupling

4 Blue tilted tensor spectrum
(5) Summary

Blue tilted tensor spectrum for $\gamma=0, p=2$

- For $\gamma=0, p=2, \epsilon=\frac{1}{2 \kappa^{2}} \frac{V^{\prime}}{V} Q<0$ during slow-roll expansion leads to $n_{t} \simeq-2 \epsilon>0$.
- This implies that null energy condtion is violated, $\rho+\mathrm{P}<0$.
- From $\mathrm{Q}>0, \xi^{\prime}>-\frac{3}{4 \kappa^{4}} \frac{\mathrm{~V}^{\prime}}{\mathrm{V}^{2}}>0$ i.e. $\xi(\phi)$ has positive slope.

Blue tilted tensor spectrum for $\gamma=0, p=2$

- For $\gamma=0, p=2, \epsilon=\frac{1}{2 \kappa^{2}} \frac{V^{\prime}}{V} Q<0$ during slow-roll expansion leads to $n_{t} \simeq-2 \epsilon>0$.
- This implies that null energy condtion is violated, $\rho+P<0$.
- From $\mathrm{Q}>0, \xi^{\prime}>-\frac{3}{4 \kappa^{4}} \frac{\mathrm{~V}^{\prime}}{\mathrm{V}^{2}}>0$ i.e. $\xi(\phi)$ has positive slope.

stability for the blue tilted spectrum

(Calcagni, de Carlos, De Felice (2006)I De Felice, Hindmarsh, Trodden (2006); Hikmawan, Soda, Suroso, Zen (2016)

- positive and non-superluminal propagation speed

$$
0 \leqslant c_{s}^{2}, c_{t}^{2} \leqslant 1
$$

- ghost-free conditions

$$
4 \epsilon\left(1-\delta_{1}\right)-\delta_{1}\left(2-2 \delta_{2}-3 \Delta\right)>0, \quad 1-\delta_{1}>0
$$

Outline

(7) Introduction
(2) Inflation with a Gauss-Bonnet term

3 Reconstruction of the potential and GB coupling

4 Blue tilted tensor spectrum
(5) Summary

Summary

- We have considered inflationary models with a Gauss-Bonnet term to reconstruct the scalar-field potentials and the Gauss-Bonnet coupling from the observable quantities.
- Assuming a specific ansatz for $n_{s}(N)$ and $r(N)$ which are in good agreement with the observational data, we obatin the analytic results for $V(N)$ and $\xi(N)$.
- Especaillay, for $\gamma=0$ and $p=2$, the reconstructed $\mathrm{V}(\phi)$ and $\xi(\phi)$ provide the blue tilted tensor spectrum, $n_{t}>0$, by violating null energy conditions. We have checked the ghost-free and stability conditions.

Appendix: linear perturbations

- linearized metric

$$
d s^{2}=\mathrm{a}^{2}(\tau)\left[-d \tau^{2}+\left\{(1-2 \mathcal{R}) \delta_{i j}+h_{i j}\right\} d x^{i} d x^{j}\right]
$$

- introducing canonical variables

$$
v_{\mathcal{R}}=z_{\mathcal{R}} \mathcal{R}, \quad v_{\mathrm{t}}=z_{\mathrm{t}} \mathrm{~h}
$$

- Sasaki-Mukhanov equations

$$
v_{A}^{\prime \prime}+\left(c_{A}^{2} k^{2}-\frac{z_{A}^{\prime \prime}}{z_{A}}\right) v_{A}=0
$$

where

$$
\begin{aligned}
c_{s}^{2} & =1-\frac{\left(4 \epsilon+\delta_{1}\left(1-4 \epsilon-\delta_{2}\right)_{\Delta}^{2}\right.}{4 \epsilon-2 \delta_{1}-2 \delta_{1}\left(2 \epsilon-\delta_{2}\right)+3 \delta_{1} \Delta}, c_{\mathrm{t}}^{2}=1+\frac{\delta_{1}\left(1-\delta_{2}\right)}{1-\delta_{1}} \\
z_{s} & =\sqrt{\frac{\mathrm{a}^{2}}{\mathrm{k}^{2}} \frac{2 \epsilon-\delta_{1}\left(1+2 \epsilon-\delta_{2}\right)+3 \delta_{1} \Delta / 2}{(1-\Delta / 2)^{2}}}, z_{\mathrm{t}}=\sqrt{\frac{\mathrm{a}^{2}}{\mathrm{k}^{2}}\left(1-\delta_{1}\right)} \\
\Delta & =\frac{\delta_{1}}{1-\delta_{1}}
\end{aligned}
$$

Appendix: power spectrum

- positive frequency mode solutions

$$
v_{A}=\frac{\sqrt{\pi|\tau|}}{2} e^{i\left(v_{A}+1 / 2\right) \frac{\pi}{2}} H_{v_{A}}^{(1)}\left(c_{A} k|\tau|\right)
$$

- power spectrum

$$
\begin{aligned}
\mathcal{P}_{A} & \left.=\left.\frac{\mathrm{k}^{3}}{2 \pi^{2}} \frac{1}{z_{A}^{2}}\langle | v_{\mathrm{A}}\right|^{2}\right\rangle \\
\mathcal{P}_{\mathrm{s}} & \simeq \frac{\csc ^{2} v_{\mathrm{s}} \pi}{\pi \mathcal{D}_{\mathrm{s}}^{2} \Gamma^{2}\left(1-v_{s}\right)} \frac{1}{\mathrm{c}_{\mathrm{s}}^{3}|\tau|^{2} \mathrm{a}^{2}}\left(\frac{\mathrm{c}_{\mathrm{s}} \mathrm{k}|\tau|}{2}\right)^{3-2 v_{s}} \\
\mathcal{P}_{\mathrm{t}} & \simeq 8 \frac{\csc ^{2} v_{\mathrm{t}} \pi}{\pi \mathcal{D}_{\mathrm{t}}^{2} \Gamma^{2}\left(1-v_{\mathrm{t}}\right)} \frac{1}{c_{\mathrm{t}}^{3}|\tau|^{2} \mathrm{a}^{2}}\left(\frac{\mathrm{c}_{\mathrm{t}} \mathrm{k}|\tau|}{2}\right)^{3-2 v_{\mathrm{t}}}
\end{aligned}
$$

where

$$
v_{s} \simeq \frac{3}{2}+\epsilon+\frac{2 \epsilon(2 \epsilon+\eta)-\delta_{1}\left(\delta_{2}-\epsilon\right)}{4 \epsilon-2 \delta_{1}}, v_{\mathrm{t}} \simeq \frac{3}{2}+\epsilon
$$

