COSMO17, APC Paris, 30.08.2017

Dark Matter - Dark Radiation interactions, H_0 and σ_8

Based on

- Lesgourgues, Marques-Tavares, Schmaltz 2016 [JCAP]
- Buen-Abad, Schmaltz, Lesgourgues, Brinckmann 2017 [tomorrow?]

J. Lesgourgues

Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

UNIVERSITY

DM-DR interactions - J. Lesgourgues

H_0 and σ_8 tensions

High H₀ w.r.t Planck ΛCDM (2-3σ): SHoES, CCHP...

Low σ_8 w.r.t Planck Λ CDM (2-3 σ):

- cluster counts (Planck SZ, ...),
- weak lensing (CFHTLens, DES, KIDs)

No direct contradiction. Systematics or slightly wrong model.

Difficult to bring all data back to 1-2 σ agreement. Doesn't work with simplest extensions (N_{eff}, m_v, w, Ω_k , decaying DM...). Requires something less trivial:

- Interacting DM-DR of [Schmaltz et al. 2015, 2016, 2017]
- Extra relativistic species with non-standard interactions of active or sterile neutrinos [Archidiacono et al. 2016; Lancaster et al. 2017; Oldengott et al. 2017]
- Dynamical dark energy [Joudaki et al. 1610.04606]

Interacting Dark Sector

Dark gauge symmetry (abelian / non abelian)

Dark gauge bosons (Dark photons / dark gluons)

Dark fermions charged under dark symmetry (and weak interactions?), massive/massless

- Concrete examples [Buen-Abad et al. 2015, Cyr-Racine et al. 2015 (ETHOS), ...]
- Specific predictions on, for instance, $\Gamma \sim T^n$, or ΔN_{eff} , or ΔN_{fluid}

Momentum exchange rate

- $\Gamma \sim T^n$ computed from first principles
- Many papers consider n=4, Γ/Η increases, late time effects, needs N-body
- We are interested in n=2 (constant Γ/H during RD, linear scales)
- At most small departure of ΛCDM; possibilities:
 - all DM could be IDM in a Weakly Interacting (WI) limit
 - fraction f could be IDM in a Dark Plasma (DP) limit, (1-f) fraction = ordinary CDM

Perturbation equations

• Coupling appears in Euler equations:

$$\begin{split} \dot{\delta}_{\rm idm} &= -\theta_{\rm idm} + 3\dot{\phi} \\ \dot{\theta}_{\rm idm} &= -\mathcal{H}\theta_{\rm idm} + k^2\psi + \mathcal{G}(\theta_{\rm dr} - \theta_{\rm idm}) \\ \dot{\delta}_{\rm dr} &= -\frac{4}{3}\theta_{\rm dr} + 4\dot{\phi} \\ \dot{\theta}_{\rm dr} &= k^2\left(\frac{\delta_{\rm dr}}{4} + \psi\right) - \mathcal{G}R(\theta_{\rm dr} - \theta_{\rm idm}) \end{split}$$

 $\mathcal{G} \equiv a\Gamma = a^{-1}\Gamma_0$

$$R \equiv \frac{3}{4} \frac{\rho_{\rm idm}}{\rho_{\rm dr}}$$

Interesting controversy on this factor (may ask question or look at appendix of tomorrow's paper)

• (Trivially) implemented in CLASS [http://class-code.net]

Modified Dark Matter growth

 Ratio of DM perturbation for (IDS model/standard ΛCDM), as a function of time, for fixed k:

ticle Physics

Effects on Matter Power Spectrum

• Ratio of P(k,z=0) for IDS model/standard Λ CDM:

Effects on CMB Lensing spectrum

• Ratio of $C_{I}^{\Phi\Phi}$ for IDS model/standard ΛCDM :

Effects on CMB temperature spectrum

• Ratio of CI^{TT} for IDS model/standard ΛCDM :

(Very different from effect massive neutrinos with comparable suppression of P(k); typically smaller; can suppress more P(k) while maintaining CMB agreement)

New dataset

Lesgourgues at al. 2016 [1507.04351]

- Planck 2015 high-l TT
- Planck 2015 low-l
- BAO 6dFGS, SDSS-MGS, BOSS-DR11
- Planck 2015 lensing
- Planck 2015 SZ as ($\sigma_8 \Omega_m^{0.30}$) prior
- CFHTLens as ($\sigma_8 \Omega_m^{0.30}$) prior
- H₀ of Riess et al. 2011

Buen-Abad et al. [1708.xxxx]

- Planck 2015 high-I TTTEEE
- Planck 2016 τ_{reio} prior (from simlow)
- BAO 6dFGS, SDSS-MGS, BOSS-DR12
- Planck 2015 lensing
- Planck 2015 SZ as ($\sigma_8 \Omega_m^{0.30}$) prior
- CFHTLens full correlation function
- Halo power spectrum from SDSS-DR7-LRG
- H_0 of Riess et al. 2016

New versions of IDS model

- non-abelian IDM model = Weakly Interacting + $\Delta N_{fluid} > 0.07$ (6 params + ΔN_{fluid} , Γ)
- + Dark Plasma model with $\Delta N_{fluid} > 0.07$ (6 params + ΔN_{fluid} , f)
- + WI and DP with $\Delta N_{fluid} > 0$ (6 params + ΔN_{fluid} , Γ or f)
- + full general IDS model with $\Delta N_{fluid} > 0$ (6 params + ΔN_{fluid} , Γ and f)

Weakly Interacting model with ΔN >0.07

Best fit model:

Data Sets	ACDM	WI
		$\Delta N_{\mathrm{fluid}}$ lin. Prior
high- ℓ TTTEEE	2452.6	2451.68
SimLow $\tau_{\rm reio}$	0.34	0.012
BAO	15.33	13.61
lensing	10.43	10.85
SDSS	45.43	46.13
CFHTLens	100.00	98.53
Planck SZ	15.50	5.20
H_0	7.80	4.08
TOTAL	2646.42	2630.09
$\Delta\chi^2_{ m eff}$	0	-16.33
		4

Parameter posteriors

with 2 extra params: 3.6σ

11 Testing DM with cosmology - J. Lesgourgues

Weakly Interacting model with ΔN >0.07

Best fit model:

Parameter posteriors

12 Testing DM with cosmology - J. Lesgourgues

Dark Plasma model with ΔN >0.07

Dark Plasma model with ΔN >0.07

Best fit model:

Parameter posteriors

14 Testing DM with cosmology - J. Lesgourgues

Relaxing lower bound on ΔN >0.07

		1	
Data Sets	ACDM	$\mathop{\rm WI}\limits_{\Delta N_{ m fluid}}$ log Prior	$\mathop{ m DP}\limits_{\Delta N_{ m fluid} \log m Prior}$
high- ℓ TTTEEE	2452.6	2447.41	2447.91
SimLow $\tau_{\rm reio}$	0.34	0.07	0.04
BAO	15.33	13.37	13.90
lensing	10.43	9.37	9.65
SDSS	45.43	44.57	44.78
CFHTLens	100.00	101.35	100.90
Planck SZ	15.50	0.19	0.016
H_0	7.80	9.06	9.74
TOTAL	2646.42	2625.39	2626.94
$\Delta\chi^2_{ m eff}$	0	-21.03	-19.48

Best fit model:

with 2 extra params: 4.1σ / 4.0σ

Relaxing lower bound on ΔN >0.07

Best fit model:

Parameter posteriors

General Interacting Dark Sector model

Best fit model:

Parameter posteriors

Short-term plans: include new data sets

- Full Planck SZ 2015 likelihood
- KIDs: will strengthen conclusions! From ($\sigma_8 \Omega_m^{0.30}$) of Joudaki et al. [1707.06627]:
 - 2.6 σ tension for Λ CDM ($\chi^2 \sim 6.7$)
 - $\chi^2 \sim 0.37$ -1.33 for our IDS best fit models
- DES: same! $\chi^2 \sim 0.00-0.74$ for our IDS best fit models
- Full P(k) from SDSS-DR12
- Lyman- α : tricky, new hydro simulation needed (specific linear growth rate).
 - Krall et al. 1705.08894 used $\chi^2(P(k_*), n_{eff}(k_*))$ from SDSS Ly- α of McDonald et al 2006: no significant χ^2 improvement (data has large σ_8).
 - Potentially different conclusions from recent BOSS Ly- α data of Palanque-Delabrouille et al. 2016, pushing not for high $\sigma_{8 \text{ but}}$ for small $n_{eff}(k_*)$!
- Planck 2017 polarisation, lensing, SZ !

