

The first results of the XENON1T

on behalf of the XENON collaboration

M. Messina NYU-Abu Dhabi, Cosmo17, 28-31 August, Paris, 2017

Dark Matter detection with LXe TPC

Some information about physics aspects

XENON1T is and Earth-based detector that realizes a Dark Matter direct search by measuring scattering between possible remnant particles foreseen in many theoretical framework, like WIMPs, and detector target

Most relevant measurable variables:

- low energy release in the target
- rate modulation because of the WIMP wind (expected to be
- few % above background).

Prompt scintillation light S1

- Ionization electron drift to the top of the TPC
- Strong field extracts electrons to gaseous phase Linear light amplification → proportional to charge signal S2
- **X**, **Y** position \rightarrow S2 hit pattern
- **Z** position \rightarrow electron drift time
- Energy → S1, S2 integral
- Electron/Nuclear recoil discrimination → S2/S1
 - WIMP (NR), background (mostly ER)

Historical path of the XENON collaboration

XENONnT

XENON10

2005-2007 15 cm drift TPC -25 kg 14 kg instrumented 5.4 fiducial Achieved 2007 Limit σ_{SI} =8.8 x 10⁻⁴⁴ cm²

XENON100

2008-2016 30 cm drift TPC -161 kg 62 kg instrumented 34/48 kg fiducial Achieved 2016 Limit σ_{SI} =1.1 x 10⁻⁴⁵ cm² 2015-2018 97 cm drift TPC 3200 kg 2000 kg instrumented 1000 kg fiducial **Projected 2018**

XENON1T

Limit $\sigma_{SI}=1.6 \times 10^{-47} \text{ cm}^2$

2019-2023 144 cm drift TPC 8000 kg 6500 kg instrumented 5000 kg fiducial **Projected 2018 /2023** Limit σ_{SI} =1.6 x 10⁻⁴⁸ cm²

2005

2010

XENON1T TPC

installed in its cryostat which is hosted in the Muon Veto detector

TPC Design

- Located at LNGS Italy, (3600 m.w.e)
- 3.2 t (total) 2.0 t (target) mass
- Inner side of the field cage(except PMTs) covered by high-reflectivity PTFE
- Field cage 1 x 1 meters

248 Hamamatsu R11410, PMTs

- Low radioactive background
- Developed with Hamamatsu
- QE 34% @ 178 nm
- Average gain 5 x 10⁶ @ 1500 V

See XENON Collaboration (E. Aprile et al.,) Eur. Phys J. C75 (2015) 11, 546

Typical event in XENON1T TPC

Typical event in the Muon Veto

First Dark Matter search campaign

- 34 days dark matter exposure (dead time corrected)
- NR and ER recoil calibration data
- Interrupted by earthquake of magnitude 5.5
 - Plus one meter snow. (Problems never come alone)
- Access to lab restricted
 - Detector survived. Operations restarted soon after the normality came back.
 - Now over 120 days exposure and counting!

Calibrations I

Nuclear Electronic AmBe

- External Source (source belt)
- low energy ER band
- Upgrade to neutron generator
 - Commissioned in May 2017
 - Time needed to calibrate was reduced from weeks to days

Calibrations II

Energy Response

450

400

 ^{60}Co

1173.2 keV

 Linear from keV to MeV using known calibration sources (LCE~12 %)

$$E = W \cdot (n_{\gamma} + n_{e}) = W \cdot (\frac{S_{1}}{g_{1}} + \frac{S_{2}}{g_{2}})$$

$$\frac{S_{1}}{E} = \frac{g_{1}}{W} - (\frac{g_{2}}{W}) \cdot \frac{S_{2}}{E}$$
550
500
500
500

 ^{50}Co

1332.5 keV

used for several corrections Position dependent light correction

Internal source (injected into LXe)

Homogeneous coverage

- Position dependent S2 amplification
- Electric field distortion

Calibration with ^{83m}Kr

conversion electrons.

- Electron life-time cross check
- Light/Charge yield stability

It is generated by ⁸³Rb decaying with 86.2 days lifetime.

^{83m}Kr decays with 1.83 hours lifetime by means of two

32.2 keV and 9 keV emissions separated by 152 ns

cS2b/E [PE/keV] 350 ^{131m}Xe 300 163.9 keV ^{129m}Xe 236.2 keV 250 ^{83m}Kr 200 41.5 keV 5 8 6 cS1/E [PE/keV] • **g1** = 0.1442 ± 0.0068 PE/photon • $g2 = 11.5 \pm 0.8$ (PE/e) (with full extraction)

Stability of working parameters

Light/Charge yield stable within 1%
^{131m}Xe (shown) and ^{83m}Kr used for

monitoring

Jan 15 2017

Electron lifetime increased during running time
Model as function of physical detector parameters

Data Selection

Note: Signal region **blinded** until selection fixed!

- Single-Scatter
 - Only one S2 (>200 pe) per event
- General event quality
 - Event can't directly follow high energy → avoid single e tails
 - Reject noise (uncorrelated signal) before main S2
- Peak Quality
 - Drift time and width of S2 must be consistent
 - S1 and S2 hit patterns must be consistent with reconstructed position
 - Ratio of light seen by top/bottom array consistent with event in liquid
- Fiducial Volume → Cylindrical, 1ton

Cut	Events Remaining
All events (cS1 < 200 PE)	128144
Data quality, selection	48955
Fiducial volume	180
S1 Range (3 < cS1 < 70 PE)	63

20

30

37

Radius [cm]

40

42

44

10

Background in the ER channel

Background events are mainly generated by impurities present in any components of the detector, by surfaces emanation and by impurities present in the Xe itself.

- Online Krypton distillation
 - ⁸⁵Kr background ^{nat}Kr/Xe <0.048 x 10⁻¹² (<48 ppq) at the output of the distillation column while in the TPC it is ^{nat}Kr/Xe = (0.36 \pm 0.06) ppt
 - ER background radon dominated
- ²²²Rn chain
 - Emanation from detector materials
 - Extensive screening program
 - Lowest possible emanation materials chosen
 - Surface treatments for internal components
 - 10 µBq/kg target concentration reached
 - Further reduction possible (XENONnT)
 - Rn distillation in XENON100 \rightarrow 27 x decrease
 - See arxiv:1702.06942
 - First tests in XENON1T promising

See arxiv: 1612.04284 and S. Lindeman, H. Simgen, Eur. Phys. J. C 7422746 (2014)

Background Evaluation in Run0

Expected WIMP rate calculated assuming WIMP_M=50 GeV/c² and σ ~10⁻⁴⁶cm²

ER and NR spectral shapes derived from models fitted to calibration data

Background	Total	NR median -2 σ , 3–70 pe
Electronic recoil	(62 ± 8)	0.25 (+0.10)(-0.07)
Rediogenic neutrons (n)	(0.05±0.01)	0.02
CNNS (V)	0.02	0.01
Accidental coincidences (acc)	(0.22±0.01)	0.06
Wall leakage (wall)	(0.52±0.32)	0.01
Anomalous (anom)	0.09 (+0.12) (-0.06)	(0.01±0.01)
Total background	(63±8)	0.36±0.09

First Result from Dark Matter Search

- Extended un-binned profile likelihood analysis
- No changes on event selection after unblinding
- Most significant ER & NR shape parameters inferred from cal. fits
- Most stringent limit on SI cross section between WIMPs and nucleons happens to be at 35 GeV of WIMP mass and it is 7.7 x 10⁻⁴⁷ cm² @ 90 C.L

XENONnT: the next step

XENONnT is a rapid upgrade of the XENON1T detector:

- New inner cryostat vessel inside the same outer vessel
- Total LXe mass will be ~8 t with 6 t active- x3 more than XENON1T
- New TPC structure with increased diameter and height (x1.4), additional PMTs (and electronics): 248 -> 476
- All other systems can handle a larger detector with a target mass of up to 10t: Cryogenics, Purification, Recovery, Support structure, DAQ, Slow Control, Muon veto. Their established performance will enable the operation of XENONnT on a fast timescale.
- Under study the need of a modular nVeto around the detector
- Current schedule: start XENONnT in early 2019

XENONnT: the next step

Conclusion and Outlook

- XENON1T leads the world sensitivity 10⁻⁴⁴
 34 live days published
 > 120 live days on disk and more are coming!

Messages

- First ton-scale LXe TPC has given results
- The detector with lower BG rate: $1.93 \times 10^{-3} \pm 0.25$ events/(kg x day x keV)
- Many more blinded data are ready to be analyzed
- XENON1T upgrade (XENOnT) is underway

