Bayesian CMB delensing for optimal constraints on r

Based on arxiv:1708.06753 (posted last week)

Marius Millea
 \square

COSMO 17 - Aug 28, 2017

How do we optimally delense future CMB data to obtain the best possible estimates of r ?

CMB "fields"

$$
\begin{aligned}
& f \equiv(T, Q, U) \\
& \mathcal{P}(f, \phi, r \mid d)
\end{aligned}
$$

Lensing potential Cosmo params

$$
\hat{\phi}(\mathbf{L})=\int d \mathbf{l}_{\mathbf{1}} W\left(\mathbf{l}_{\mathbf{1}}, \mathbf{l}_{\mathbf{2}}\right) d\left(\mathbf{l}_{\mathbf{1}}\right)^{*} d\left(\mathbf{l}_{\mathbf{2}}\right)
$$

All current analyses are based on this Currently near-optimal but will be suboptimal for next-gen noise levels
$\mathcal{P}(\phi \mid r, d)$

$$
=\int d f \mathcal{P}(f, \phi \mid r, d)
$$

Carron \& Lewis (2017), Hirata \& Seljak (2003) give algorithm to maximize this

Why is sampling/minimizing $\mathcal{P}(f, \phi \mid d)$ such a hard problem?

So, as pointed out by Anderes et al. 2015, its very beneficial to reparametrize,

What is the determinant of lensing?

- Infinite resolution: lensing is a remapping (i.e. permutation) so $\operatorname{det}|\mathcal{L}(\phi)|=1$
- This is not the case when we have pixelization. Consider the Taylor series approx:

$$
\tilde{f}(x)=f(x+\nabla \phi(x)) \approx \underbrace{[1+\nabla \phi(x) \cdot \nabla+\ldots]}_{\mathcal{L}(\phi)} f(x)
$$

Additionally, the variation of the determinant with ϕ is significant.

A solution: LenseFlow

Define $f_{t}(x) \equiv f(x+t \nabla \phi(x))$

$$
f_{t=0}(x)=f(x)
$$

s.t.

$$
f_{t=1}(x)=\tilde{f}(x)
$$

One can show f_{t} obeys an ODE "flow" equation

$$
\frac{d f_{t}(x)}{d t}=\nabla \phi(x) \cdot[\mathbb{1}+t \nabla \nabla \phi(x)]^{-1} \cdot \nabla f_{t}(x)
$$

- To lense a map, just run the ODE from $t=0$ to $t=1$
- To delense a map, just run it backwards from $t=1$ to $t=0$
- This operation provably has determinant = 1

LenseFlow vs. Taylor series

Differences between the two which lead to different determinants

Ok, let's maximize \& sample!

The algorithm we devise is a coordinate descent

$-2 \ln \mathcal{P}(\tilde{f}, \phi \mid d)=$ \tilde{f} step : a Wiener filter

$$
=\underbrace{(d-\tilde{f})^{\dagger} \mathcal{C}_{n}^{-1}(d-\tilde{f})}_{\text {likelihood }}+\underbrace{\tilde{f}^{\dagger} \mathcal{L}(\phi)^{-\dagger} \mathcal{C}_{f}^{-1} \mathcal{L}(\phi)^{-1} \tilde{f}}_{\text {prior on } f}+\underbrace{\phi^{\dagger} \mathcal{C}_{\phi}{ }^{-1} \phi}_{\text {prior on } \phi}
$$

Starting point: $\phi=0$
Simulated data with: 1 uK -arcmin noise, $\mathrm{r}=0.05$

Step 1

Step 3

Step 30

30 min on 1 single multi-core CPU for these $2500 \mathrm{deg}^{2}$

 $1024 \times 1024,3$ arcmin pixels

Masking works too

(Only affects the Wiener filter step which needs more conjugate gradient steps => 4 hours)

What about sampling?

For now, a slightly simplified preview: $\mathcal{P}(f, \hat{\phi}, r \mid d)$

Conclusions

- We can maximize $\mathcal{P}(f, \phi, r \mid d)$
- Sampling is coming up and l've given you a preview of it
- Looking forward to more improvement, application to data, and feedback from the community (see arxiv:1708.06753)

Soyder es 8.
w ${ }^{6}$
$24+2 x=$

 2

LenseFlow determinant

$$
\frac{d f_{t}(x)}{d t}=\underbrace{\nabla \phi(x) \cdot[\mathbb{1}+t \nabla \nabla \phi(x)]^{-1}}_{p_{t}} \cdot \nabla f(x)
$$

$$
\mathcal{L}(\phi)=\left[\mathbb{1}+\varepsilon p_{t_{n}} \cdot \nabla\right] \cdots\left[\mathbb{1}+\varepsilon p_{t_{0}} \cdot \nabla\right]
$$

$$
\operatorname{logdet}\left[\mathbb{1}+\varepsilon p_{t} \cdot \nabla\right]=\varepsilon \operatorname{Tr}\left[p_{t} \cdot \nabla\right]+\mathcal{O}\left(\epsilon^{2}\right)
$$

So for LenseFlow $\operatorname{det}|\mathcal{L}(\phi)|=1$ so we can ignore it!

LenseFlow

Taylor series

Differences between two which lead to different determinants

