# Implications of Inflationary Interaction on Gravitational-wave Detection

Ryo Namba

McGill University

#### COSMO 2017: August 30, 2017

Fujita, **RN** & Tada, arXiv: 1707.05820 Shiraishi, Hikage, **RN**, Namikawa & Hazumi, PRD 94(2016)043506, arXiv: 1606.06082 **RN**, Peloso, Shiraishi, Sorbo & Unal, JCAP 1601(2016)041, arXiv: 1509.07521 Barnaby, **RN** & Peloso, JCAP 1104(2011)009, arXiv: 1102.4333

### Standard prediction for GWs from inflation

$$\left. \boldsymbol{P}_{\rm GW}(k) = \frac{2H^2}{\pi^2 M_p^2} \right|_{k=aH}, \qquad \boldsymbol{E}_{\rm inflation} \cong 5 \cdot 10^{15} \, {\rm GeV} \left( \frac{\boldsymbol{P}_{\rm GW}}{10^{-12}} \right)^{1/4}$$

### **Standard lore**

 $\text{Detectable GW } \textbf{\textit{P}}_{\text{GW}} \gtrsim \mathcal{O}(10^{-12}) \quad \Longleftrightarrow \quad \text{Large } \textbf{\textit{E}}_{\text{inflation}} \gtrsim \mathcal{O}(10^{16}) \text{ GeV}$ 

- Considered as direct probe of inflationary energy scale
- ◊ Slightly red-tilted ~ decreasing H

# General arguments



GW power spectrum  $\sim$  Spectrum of GW energy fraction  $\Omega_{GW}$ 

• The standard single-field slow-roll case:



Source of GWs = vacuum fluctuations of graviton

Evolution driven only by expansion of the universe

Ryo Namba (McGill)

GW from inflationary interactions

COSMO 2017 3 / 17

・ロ・・ (日・・ (日・・ (日・)

• (continued...) The standard single-field slow-roll case:



(approximate) scale-invariance of  $P_{\rm GW}$ 

・ロト ・四ト ・ヨト ・ヨト

- More general cases: There can occur particle production during infl. Focus on  $\mathcal{L}_{int} = \chi F \tilde{F}$ 
  - Inflationary interaction can induce copious production of quanta
  - $\triangleright$  Additional sources for GW can lead to  $ho_{GW} 
    eq H^4$



This is an simple argument...

Why has such a simple argument not been considered extensively?

### Decomposition theorem (in cosmology)

On homogeneous and isotropic background, scalar, vector & tensor modes are decoupled at the 1st-order cosmological perturbations

$$\delta_1 S, \ \delta_1 V_i \implies h_{ij}$$

What to come:

- CASE I: Sources for GW are only scalar or vector fields
  - **EXAMPLE I:** Inflaton + U(1) gauge field (Axion inflation)
  - **2 EXAMPLE II: Spectator axion** + U(1) gauge field

- CASE II: Sources for GW are an additional "tensor" modes
  - **EXAMPLE III:** Inflaton + *SU*(2) gauge field (Chromo-natural inflation)
  - EXAMPLE IV: Spectator axion + SU(2) gauge field

• CASE I: "tensor" modes only from the metric perturbations  $\delta g_{\mu
u}$ 



- However, they also source curvature (scalar) perturbations

$$(\delta S)^2$$
,  $(\delta V_i)^2 \implies \zeta$ 

- We need to ensure the following two results:

**)** To respect constraints on scalar perturbations  $(n_s, f_{NL})$ 

Ito have sourced h<sub>ij</sub> be dominant over the vacuum fluctuations

Ryo Namba (McGill)

# CASE I: GWs from 2nd order effects

#### **EXAMPLE I:** Inflaton + **U**(1) gauge field



Barnaby & Peloso '10; Barnaby, RN & Peloso. '11

Ryo Namba (McGill)

Image: A matrix

# CASE I: GWs from 2nd order effects

#### **EXAMPLE I:** Inflaton + **U**(1) gauge field



Barnaby & Peloso '10; Barnaby, RN & Peloso. '11

Ryo Namba (McGill)

GW from inflationary interactions

COSMO 2017 9 / 17

500



Barnaby et al. '12; Mukohyama et al. '14; RN et al. '15; Shiraishi et al. '16

Ryo Namba (McGill)



Barnaby et al. '12; Mukohyama et al. '14; RN et al. '15; Shiraishi et al. '16

Ryo Namba (McGill)

COSMO 2017 10 / 17



Cook & Sorbo '11; Senatore et al. '11; Cook & Sorbo '13; Ferreira & Sloth '14; Biagetti et al. '14; Mirbabayi et al. '14; Choi et al. '15; Ferreira et al. '15; Peloso et al. '16



Cook & Sorbo '11; Senatore et al. '11; Cook & Sorbo '13; Ferreira & Sloth '14; Biagetti et al. '14; Mirbabayi et al. '14; Choi et al. '15; Ferreira et al. '15; Peloso et al. '16 CASE II: Exceptions to standard decomposition

- requires additional "tensor"

— Introduce an SU(2) gauge field with a vev

 $\langle \boldsymbol{A}_{\mu}^{\boldsymbol{a}} 
angle = \boldsymbol{A}(\boldsymbol{t}) \, \delta_{\mu}^{\boldsymbol{a}}$ 



- ▷ Isotropic (SO(3) invariant) configuration for background
- $\triangleright$  Perturbations  $\delta A^a_{\mu}$  contain "tensor" modes

Maleknejad & Sheikh-Jabbari '11

 $\delta A_i^a \supset t_i^a \longrightarrow$  couled to GW modes at linear order

### CASE II: GWs from 1st order effects

Pseudo-scalar + SU(2) gauge field

$$\mathcal{L} = -\frac{1}{2} (\partial \chi)^2 - U(\chi)$$
$$-\frac{1}{4} F^a_{\mu\nu} F^{a,\,\mu\nu} + \frac{\lambda}{4f} \chi F^a_{\mu\nu} \tilde{F}^{a,\,\mu\nu}$$

### Isotropic configuration

$$\langle {\cal A}^a_0 
angle = {f 0} \;, \;\;\; \langle {\cal A}^a_i 
angle = a \, {\cal A}_{
m BG} \, \delta^a_i$$





### CASE II: GWs from 1st order effects

**EXAMPLE III:** Chromo-natural inflation ( $\chi = inflaton$ )

Adshead & Wyman '12



**Observationally excluded** — too much GW production for a given  $n_s$ 

Dimastrogiovanni & Peloso '12; Adshead, Martinec & Wyman '13



Modification: Higgsed Chromo-natural Inflation

Adshead et al.'16

Ryo Namba (McGill)

COSMO 2017 14 / 17

### CASE II: GWs from 1st order effects

#### EXAMPLE IV: $\chi$ = spectator axion + SU(2) gauge field

Dimastrogiovanni, Fujita & Fasiello '16



Parity-violating production

- Transient exponential production of only one helicity



Ryo Namba (McGill)

COSMO 2017 15 / 17

#### Observationally viable

- Available parameter space



- Other signatures: Tensor non-Gaussianity, TB/EB correlations

Agrawal, Fujita & Komatsu '17; Thorne et al. '17

Image: A matrix

Ryo Namba (McGill)

5900

# Summary and Discussion

- Future observations aim for  $\sigma(r) = \mathcal{O}\left(10^{-3}\right)$
- Generally GW power spectrum relates to

$$P_{
m GW} \sim rac{1}{
ho_{
m total}} \, rac{{
m d} 
ho_{
m GW}}{{
m d} \ln k}$$

- ▷ Standard single-field case:  $\rho_{\rm GW} \sim H^4$  detection implies high  $H_{\rm inflation}$
- Inflationary interaction induce production of particles
  - ▷ Additional source for GWs  $\implies \rho_{GW} \not\sim H^4$
- Copious production:  $\mathcal{L}_{int} = \chi \operatorname{Tr} [\boldsymbol{F} \tilde{\boldsymbol{F}}]$ 
  - **(** [EXAMPLE I] Inflaton + **U**(1) (axion inflation)  $\implies$  Not enough production
  - **2** [EXAMPLE II] Spectator axion  $+ U(1) \implies$  Scale-dependent spectrum
  - $\textcircled{0} [\mathsf{EXAMPLE III}] \text{ Inflaton} + \textcolor{blue}{SU(2)} (chromo-natural) \implies \mathsf{Observ. excluded}$
  - **(3)** [EXAMPLE IV] Spectator axion + SU(2)  $\implies$  Wide parameter range

Sac