

Gauss-Bonnet Coupled Quintessential Inflation

arXiv: 1707.06839

28th August 2017 Charlotte Owen

Work done under the supervision of Dr. Konstantinos Dimopoulos, in collaboration with Prof. Carsten van de Bruck and Chris Longden from Sheffield University.

Accelerating Expansion

Cosmological Constant Model

- Cosmological Constant

 energy density of
 empty vacuum with
 negative pressure
- $\rho_{\Lambda} \approx (10^{-3} \text{eV})^4$
- Equation of state parameter: ω=-1
- Problems with CC:
 - Cosmological
 Constant Problem
 - Fine-tuning
 - Future Horizons

Quintessence

- Dynamical scalar field, varying in space and/or time
- Dominates the energy density of the Universe at the present time

$$\omega \leq -\frac{1}{3}$$

- Ratra & Peebles, 1988 (before discovery of Dark Energy!)
- Problems with Quintessence:
 - Fine tuning problem persists (initial conditions)
 - Fifth force problem

- Links the two observed phases of accelerated expansion – inflation and dark energy, with the same mechanism.
- Considerations:
 - Persisting fine-tuning problem but initial conditions fixed.
 - Persisting fifth force problem.
 - Very large difference between plateaus must work at two very different energy scales whilst maintaining flat plateaus.
 - Avoid super-planckian field values.
 - Should not feature Λ scale: $\rho_{\Lambda}\approx (10^{-3}{\rm eV})^4$

Tanh as a Prototype Potential

- Two plateaus
- Rolls super Planckian when
 the exponential
 is very steep
- Radiative corrections threaten flatness of late-time plateau
- How can we fix this?

Introducing a Gauss-Bonnet Term

$$S = \int d^4x \sqrt{-g} \left[\frac{m_P^2}{2} R - \frac{1}{2} (\partial \phi)^2 - \frac{m_P^2}{2} G(\phi) E - V(\phi) \right]$$

 $E = R^2 - 4R^{\mu\nu}R_{\mu\nu} + R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma}$ Gauss-Bonnet:

- Total derivative
- No ghosts
- No effect on equations of motion

Coupling to the Gauss-Bonnet: $G(\phi) = G_0 e^{\frac{-q\phi}{m_P}}$

- Varies with φ
- Affects equations of motion
- Suppressed until late times
- Freezes the inflaton's motion

GB Introduces Minimum to Effective Potential

Inflationary Observables

$$n_s \approx 1 - \frac{2}{N}$$

 $r \approx \frac{2}{p^2 N^2}$

For N = 50 (60):

 $n_{s} \approx 0.960 \ (0.967)$

 $r_{\rm max} \approx 0.0008 \ (0.0006)$

Planck $1\sigma (2\sigma) : n_s = 0.968 \pm 0.006 (0.01)$

Remain sub-Planckian:

Satisfy dark energy observations: $\rho(\phi_0) = \rho_{DE} = 10^{-120} m_P^4$

Reheating in Quintessential Inflation

Models of quintessential inflation have non-oscillatory behaviour. Cannot reheat the Universe in the traditional perturbative way.

Instant Preheating

Felder, Kofman & Linde, Phys. Rev. D 59 (1999)

$$\mathcal{L} = -\frac{1}{2}g^2\chi^2|\phi - v|^2 - h\bar{\varphi}\varphi\chi$$

Adiabaticity constraint violated, particle production: $|\dot{m}_{\chi}| \gg {m_{\chi}}^2$

• Region of particle production:

$$\phi = \nu \pm \sqrt{\frac{|\dot{\phi}|}{g}}$$

 Shift symmetry allows us to incorporate instant preheating in to a range of model parameters

Correct History of Universe Evolution

For radiation domination: $\rho(\chi^*) > \rho(\phi_a^{\dagger})$

Kinetic > potential energy : $\frac{1}{2}\dot{\phi}_a^2 > V(\phi_a)$

Kinetically dominated field evolves as a^{-6}

Radiation evolves as a^{-4} . Ensures sufficient R.D.

* ϕ_a refers to *after* instant preheating. + We assume all the energy is instantaneously converted into radiation and thermalised

Model Constraints

Sub-Planckian: $\phi < m_P$ DE observations: $\rho(\phi_0) = \rho_{DE}$ Radiation Domination: $\frac{1}{2}\rho(\phi_b*) < \rho_{\chi} < \rho(\phi_b) - 2V(\phi_{IP})$

K. E. (φ) > 3V(φ)

* ϕ_b refers to before instant preheating.

Model Constraints

Dark Energy Constraint $\rho(\phi_0) = \rho_{DE}$

- GB Coupling freezes time evolution of field:
- At very late times:

$$\frac{\phi_s}{m_P} = \frac{1}{q - 2p} \ln \frac{2qV_0 G_0}{3pm_P^2}$$
(1)

• In terms of the density parameters:

$$V + \frac{V_{,\phi}^2}{18H^2} + \left[3\Omega_{\Lambda} + \frac{2}{3}(7+3w)V_{,\phi}G_{,\phi}\right]m_P^2H^2 + 2(1+3w)(13+3w)\left(m_P^2G_{,\phi}\right)^2H^6 = 0 \quad (2)$$

- Inserting $\Omega_{\Lambda} = 1$ into Eq.(2) \rightarrow we recover Eq.(1)
- Inserting $\Omega_{\Lambda} = 0.7$, $\Omega_m = 0.3$, $H = H_0 \rightarrow$ we find ϕ_0
- We can use dark energy constraint to constrain parameters

Results

Results

Natural choice of parameter values:

$$g < 1$$
, $G_0 > m_P^{-2}$, $q > 2n$

• Final constraints for *prototype* model:

$50 \lesssim p \lesssim 350$

- Large viable parameter space
- Working model realisation applicable to any potential with two plateau regions

Theoretical Consideration - Fifth Force Problem

• Mass dependent couplings to the standard model:

$$m_{eff}{}^2 = V^{\prime\prime} \approx H$$

 Compton Wavelength ~ H⁻¹ – we must include the interaction terms in the Lagrangian:

$$\sim \frac{\beta_i \phi}{m_p} \mathcal{L}_i$$

• To ensure suppression of these terms:

$$\beta_i \phi < m_p$$

• Motivation for our paper, $\phi < m_P$, avoids fine-tuning of β_i .

Distinguishing Between Cosmological Constant and Quintessence

Experimental Observations of the Equation of State

- Cosmological constant,
 ω = -1
- Quintessential inflation, not always ω = -1, time dependent.

Gauss-Bonnet Coupled Quintessential Inflation - Summary

- Coupling between Gauss-Bonnet term and scalar field maintains a sub-Planckian field.
- Ensures the stability of the second plateau and latetime acceleration.
- Inflationary observables in agreement with Planck results.
- Parameter space matching dark energy observations today.
- Quintessential Inflation is a natural (minimal and economical) alternative to ΛCDM

Thank you for listening, any questions?

28th August 2017 Charlotte Owen

arXiv: 1707.06839