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Motivation

¢ General Relativity (GR) with normal matter

= cosmological singularities are inevitable
(Penrose ['65], Hawking ['67])

e Even inflationary cosmology (within GR) is inevitably past incomplete
(Borde & Vilenkin [gr-qc/9312022], Borde et al. [gr-qc/0110012])

¢ One would thus like to build a theory that is free of these bad
singularities
= one has to go beyond classical GR

o Ultimate goal: a theory of the very early universe embedded in a
quantum theory of gravity without singularities
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One approach to nonsingular cosmology

e Horndeski theories:

L= Ga(¢,X) — G3(¢, X)0¢ + Ga(¢, X)R + Ga x[(0)* — (V. V.0)’]

X ((09)° — B(OA)(Vu V) + 2V, V)",

where X = 19"V, ¢V, ¢ and G = Ry — 39,0 R

+G5(9, X) G V'V ¢ —

e Choose the G;(¢, X)’s in order to violate the Null Energy Condition
for a short period of time

e |s the resulting theory stable?
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Perturbations and (in)stability
e 2nd-order perturbed actions (unitary gauge):
1 .9 Fr =
St(ezr)lsor = g /d41' a3 |:gThij o ;(Vhl})2:| )

Ss((?a)dar = /d4l‘ a’ |:g5¢2 - u (64)2]

a?

o Conditions for stability (e.g., scalar sector):
Gs > 0 < no ghost instability ,

Fs > 0 < no gradient instability
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No-Go Theorems

¢ Within Horndeski theories, it is not possible to have a geodesically
complete spacetime and be free of both ghost and gradient
instabilities at all times

(Libanov et al. [1605.05992], Kobayashi [1606.05831])
Gs(t) >0, Fs(t) >0, Gr(t) >0, Fr(t) >0, Vt € (—o0,0)

e Can also be shown in effective field theory (EFT) (caietal [1610.03400, 1701.04330],
Creminelli et al. [1610.04207])
e The no-go can be evaded only if:

e In EFT, include higher-order operators
(Cai & Piao [1705.03401, 1707.01017])

e Work with beyond-Horndeski theories
(Kolevatov et al. [1705.06626])
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Other approach to nonsingular cosmology:
limiting curvature

e The idea of limiting curvature: there should exist a fundamental length
scale ¢ (possibly ~ ¢p;) such that

IR| < €72, R R*™| < €74, |V,Ru VPR | < £75) ete.
o Difficulty: one could have |R,,, R**| < ¢7*, but still

IV, R, VPRM| = oo.

e Limiting curvature hypothesis: find a theory with a finite number of
curvature invariants bounded, e.g., |R| < £;%, |R,, R*| < 6}74. Then,
when these invariants take on their limiting values, any solution of the
field equations reduces to a definite nonsingular solution.

Mukhanov & Brandenberger [PRL, 1992]
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Limiting curvature implementation:
example in special relativity

e Action for a point particle in special relativity:

2@2

14+2p°

S:m/dt [;x'2+g0x'2V(go) ,  Vip)=

2_dv _ ¢

°0,5=0 = &°=37 = ey = @2 < 1V € (—00,00)

B (1+290)

e Solving for ¢ in terms of &2 and substituting in the action above, one

finds
S:m/dt\/l—:'UQ,

as expected.
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Limiting curvature implementation

Naturally constructed to avoid singularities (contrary to, e.g.,

Horndeski theories)

Used to construct nonsingular black holes (Frolov et al. 189, 90, Morgan 91, Trodden et
al. [hep-th/9305111], Bogojevic & Stojkovic [gr-qc/9804070], Easson [hep-th/0210016], Frolov [1609.01758], Chamseddine &
Mukhanov [1612.05861])

In Cosm0|0gy, the aCtion iS (Mukhanov & Brandenberger ['92], Brandenberger et al. [gr-qc/9303001])
Mlg'l 4
s§=—H /d 2 v=g[R + 1li(R, RuR™, .) — Vi(x1)

+ x212(R, R,uVlea )= V?(XQ)] + Sm

Assume I, I, ~ O(R). Since in FRW R = 12H? + 6H, a natural
choice is )
I =12H%?, I,=-6H.

So 6,,5 = 0 and §,, S = 0 gives the constraint equations
1:1:12H2:%, fQ:—ﬁH:%.
dx1 dx2
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Example: de Sitter to Minkowski (inflation)
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Example: Minkowski to Minkowski (genesis)
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Example: Minkowski to Minkowski (genesis)
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Perturbations and stability

L=R+x1li —Vi(x1) + x2I2 — Va(x2)

e Mukhanov & Brandenberger 92 took

I = \/12RWRW _3R?2, IL,=L+R.

e InFLRW, [; = 12H? and I, = —6H as wanted

e Consider tensor modes. 2nd-order perturbed action (in Fourier
space):

. . k2
St(gr)lsor > /dtdgk a3 (gThZ + K:Th% — MTa2h2> 5

X1+ X2
Gr=— =
g 2 F
— Ostrogradski instability (corresponds to a linearly unstable

Hamiltonian)
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Possible resolution

L=R+x1i —Vi(x1) + x2I2 — Va(x2)

¢ Include the Weyl tensor squared:

Iy = \/12R,, R — 3R? + 35CupeCH77, =D+ R.

e Perturbing the action in the tensor sector:

. . k2
S o D / dtd’k o <9Th,3 + Krhi — MTa2h§> ,

X1+ X2
Or=—-02+4+kr)=——,
r=—2+mXE

—» k= —2 = Gp = 0 — no Ostrogradski ghost
e Is it valid at higher order (S®), S@, ..)? Possibly only up to Hpax
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Perturbations modes

L=R+x1 <R+ \/12R,. Rev — 3R? — 66’2) Vi)

+ X21/12R REv — 3R2 —6C2 —Va(x2), O = CuypoCHVP°

No propagating vector modes
Tensor and scalar modes:

. k2
SP / dtdk a? </cThz - MTth>
a

S~ [ dtd®ha® (s} — Ms(r)22)

Mg(k) ~ O[(k/a)8] for k/a > 1 — modified dispersion relation
Kr, Mr, Ks, Mg are complicated functions of x,, and V,,(x») that
can be positive or negative depending on the background trajectory
— possible ghost and gradient instabilities
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Stability during inflation and genesis
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16/20

vature (arXiv:1704.04184)

smologies with limiting cur:

singular co:

Stability of non:

J. Quintin (McGill U.)



Construct another curvature invariant function
L=R+x1l1 —Vi(x1) + x2l2 — Va(x2)
e Consider first derivatives of R:
X*,=V*RV,R, X =V*RV,R
e For a flat FLRW background,
X = —36(4HH + H)?

e Want to construct I; such that I; = 12H2:
1
I = —F[ALXQ(VMVVR)Z —2X(V,X)* + (V,RV,X)?]
e Then, I, =1, — Rand I, = —6H.
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Perturbations for the new curvature invariant function
¢ No propagating vector modes

e Tensor modes:

2 ; k2
G / dtd3k o </cThz - MTQQh§>
where L+ dy: +3 |
K — x; X2 g 2><2

e No Ostrogradski instability. No ghost or gradient instabilities as long
as x2 < land x; > —(1+ 3x2)/2.

e No superluminality = 2= Mrp /Ky <1 = x1 > —xo.

e Similar story in the scalar sector, though the conditions on x; and x»
are slightly more non-trivial
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Stability during inflation and genesis

Inflation Genesis
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Conclusions

e Simple nonsingular cosmologies within Horndeski theories are
unstable (no-go theorem)
—> one needs to consider beyond-Horndeski theories

e Other approach: limiting curvature

e Old model of Mukhanov & Brandenberger has Ostrogradski
instabilities

e Can be cured by including the Weyl tensor squared
— still important ghost and gradient instabilities

e New curvature invariant constructed with derivatives of R leads to no
apparent Ostrogradski instability

e Inflationary and genesis scenarios are mostly stable with regards to
ghost and gradient instabilities

o Still very hard to construct stable nonsingular cosmologies
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What's next?

e Construct viable nonsingular inflationary and genesis scenarios, and
explore cosmological observables

e Explore nonsingular bouncing cosmology
(E.g., Chamseddine & Mukhanov [1612.05860], Bodendorfer et al. [1703.10670], Liu et al. [1703.10812])

e How does the theory with limiting curvature fit in the greater picture of
scalar-tensor theories of gravity?
— included in beyond-Horndeski theories? in Degenerate
Higher-Order Scalar-Tensor (DHOST) theories?

J. Quintin (McGill U.) Stability of nonsingular cosmologies with limiting curvature (arXiv:1704.04184) 21/20



Acknowledgments

Thank you for your attention!

| acknowledge support from the following agencies:

Bourses détudes
supérieures du Canada

Vanier NSERC
Canada Graduate CRSNG

Scholarships

T McGill

J. Quintin (McGill U.) Stability of nonsingular cosmologies with limiting curvature (arXiv:1704.04184)

22/20



	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 


