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Motivation: current cosmic knowledge

What is the Reionization Era? e \We have measurements of
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21-cm hyperfine transition

* Occurs in neutral hydrogen.
Proton and electron have
magnetic moments due to their

spin.

21-cm emission .
Energy difference between

moments being aligned and
anti-aligned is equal to the
energy of a photon with rest
wavelength (frequency) 21 cm
(1420 MHz).

Images from Wikipedia
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Global 21-cm signal from the first luminous objects

Burns et al 17
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Dark Ages Radio Explorer (DARE)

Space mission concept that uses dual polarization bicone antennas to
measure the global 21-cm signal from the

In this way, it Earth-based challenges like and
as well as
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Biggest challenges of measuring the global signal

Burns et al 17 (ApJ, 844, 33)
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As part of the solution, however: The pipeline will utilize the differences in spatial and
spectral variations as well as polarization between the signal and foregrounds.
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Singular Value Decomposition (SVD)

. 1
M =UxV

|
Training Set: Ordered basis functions:
(N channel XN curves) (N channel XN channel)

« SVD computes and orders by importance the
orthogonal of the N_,,,es Curves of the training
set, M, by importance.

« Y is a diagonal matrix containing the

(square root of eigenvalues of MM?").
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Foreground training set

DARE beam at 80 MHz

. Antenna temperature simulated
from beam, B(v, ), and sky,
Tsky (v, Q), through

| B(v, Q) Tpy (v, Q) dQ
[B(v,Q) dQ

Ty(v) =

. .
5.94826e-06 0.663649 « CST code used to model beam
All-sky 408 MHz map from Haslam et al. 1982

* Sky maps from Guzman et al.
(2010) and Haslam et al. (1982)
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Instrument systematics are simulated through the following calibration

Instrument simulation

equation:

P =g[IFI12(1 = [T\ )Ty + Ty 5f]

Applying this equation and then its inverse with slightly different parameters
on an antenna temperature yields a calibrated antenna temperature that
differs by a
functions of frequency:

,and an

, Which are

(Ta)car = G * (Tp)igear + B
Instrument training sets
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Signal training set

Popll signal sample

Brightness temperature (mK)
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- Signals created by exploring the parameter space of the ares code:
https://bitbucket.org/mirochaj/ares
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SVD modeling of the signal and systematics

Burns etal 17 (Apd, 844, 33)
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- SVD orthonormal modes. The ability to separate the 21-cm signal from
DARE'’s systematics hinges on the ability to distinguish between the signal (f)
and systematic (g) modes. Therefore, we want minimal overlap between them.

August 29, 2017

COSMO-17, Paris



Signal training set

Poplll sighal sample
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- Derived by randomly sampling the parameter space surveyed in Mirocha et al 17 with the addition
of two parameters describing UV and X-ray photon production efficiency in minihalos.
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SVD modeling of the S|gnal and systematlcs

Burns etal 17 (Apd, 844 33)
Poplll signal modes

Systematic modes
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- SVD orthonormal modes. The ability to separate the 21-cm signal from
DARE'’s systematics hinges on the ability to distinguish between the signal (f)
and systematic (g) modes. Therefore, we want minimal overlap between them.
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Covariances between the signal and systematics modes

Burns et-al 17 (ApJ, 844, 33)

Popll model covariance Poplll model covariance
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-The vertical and horizontal black lines separate the regions with covariances
between signal parameters (top left) and systematic parameters (bottom right).
The other two regions are symmetric and show the covariances between signal
and systematic parameters.
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Extracting the signal from the systematics

Burns et al 17
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- The extracted 21-cm spectra for models with primordial and
stars for 800 hours of observation with DARE.
thermal (statistical) noise from the sky. total uncertainty,
statistical plus systematic effects (instrument and foreground).
- The between SVD signal and systematic modes the total
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Model selection using BPIC:
number of SVD modes (preliminary)
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(See Tauscher et al. 2017 in prep.)
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Model selection using BPIC:
number of SVD modes (preliminary)

BPIC Optimizing
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(See Tauscher et al. 2017 in prep.)
August 29, 2017 COSMO-17, Paris



Separating systematics with induced polarization (preliminary)
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SVD/MCMC data analysis pipeline to extract the signal
and constrain physical parameters (preliminary)
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_ _ _ (See Rapetti et al. 2017, in prep.)
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Conclusions

Take away: 21-cm signal using

A challenge of extracting the global 21-cm is the .
However, unlike the foregrounds the signal is . has
well-characterized ,and is :
We benefit from these differences in our for
and , using an
pipeline.
We obtain Improvement by using

We are also preparing to run our pipeline on

from the Experiment to Detect Global Epoch of Reionization Signal

( ), which has been taking data for about a decade, and the

Cosmic Twilight Polarimeter ( ; currently being deployed), which
will allow us to use non-simulated polarization data for the first time.
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