Cosmological Constraints on Ensembles of Unstable Particles

Patrick Stengel

University of Michigan

August 29, 2017

1709.maybe with Keith Dienes, Jason Kumar and Brooks Thomas

EM constraints and particle ensembles

Electromagnetic processes in the early universe

Cascade processes	Thermalization	Injected EM particles
$\gamma \gamma_{BG} \rightarrow e^+ e^-$ $e^{\pm} \gamma_{BG} \rightarrow e^{\pm} \gamma$	$\gamma N \to e^+ e^- N$ $e^{\pm} N^{\pm} \to e^{\pm} N^{\pm} \gamma$	 ruin BBN before thermalizing
$\gamma\gamma_{BG} \to \gamma\gamma$	$\gamma e_{BG}^{\pm} \rightarrow (\gamma) \gamma e^{\pm}$	 distort CMB blackbody

EM constraints and particle ensembles

Extra dimensions predict an ensmeble of decaying fields

Compactification produces moduli

- Axion-like particles generic in string theory
- Possibly many light zero modes
- Expect logarithmic mass distribution

igher modes can also be light

- Bulk axions yield KK tower of states
- Entire spectrum can interact with SM
- More massive fields generally decay earlier

EM constraints and particle ensembles

String axiverse can contain light fields coupling to $E \cdot B$

Use analytic approximations

- Estimate single component constraints from μ and y_c
- Extend to decaying ensemble
- Apply to "axiverse" example, Arvanitaki et. al. 0905.4720

Spectral distortions to the CMB

Thermalization freezes out \Rightarrow heating alters blackbody

Photon occupation numberDistortion type depends on injection time
$$n_x = \frac{1}{e^{x+\mu(x)}-1} + \Delta n_x^y$$
 $\Delta n_x^y = y \frac{xe^x}{(e^x-1)^2} \left[x \coth\left(\frac{x}{2}\right) - 4\right]$ $n_x \simeq n_x^{pl} + \Delta n_x^\mu + \Delta n_x^y$ $\Delta n_x^\mu \simeq \mu \frac{e^x}{(e^x-1)^2} \left[\frac{x}{2.19} - 1\right]$, for $\mu \ll 1$

Spectral distortions to the CMB

Electromagnetic injection heats e_{BG}^{-} , which then heat γ_{BG}

Figure: $\Delta I_{\nu} = I_{\nu}^{\mu,y} - I_{\nu}^{pl} \propto x^3 \Delta n$, see Khatri and Sunyaev 1207.6654.

Compton scattering maintains kinetic equilibrium as DC and BR freeze out

$$\frac{d\mu}{dt} = \frac{d\mu_{inj}}{dt} - \mu(\Gamma_{DC} + \Gamma_{BR})$$

 y_c -type distortion after Compton scattering becomes inefficient

$$rac{dy_c}{dt} \sim rac{1}{
ho_\gamma} \Gamma_0
ho_0 \sim rac{d\mu_{\mathit{inj}}}{dt}$$

Assuming $\mu, y_c \ll 1$ and $x_{inj} \gg 1$

Analytic approximations are valid and uniform decay is accurate

Spectral distortions to the CMB

Use Greens functions to calculate $\mu \lesssim 10^{-4}$, $y_c \lesssim 10^{-5}$

Need subdominant μ , y_c regions for multipe decays

μ from uniform decay

$$\delta \mu \left(au \lesssim t_{EC}
ight) \sim \Omega au^{1/2} e^{-\left(t_0 / au
ight)^{5/4}}$$

Add intermediate and late regions, take $t_{EC} \rightarrow t_B$ and fit seperately

$$\begin{split} &\delta\mu\left(t_B \lesssim \tau \lesssim t_{MRE}\right) \sim \Omega \tau^{1/2} \\ &\delta\mu\left(t_{MRE} \lesssim \tau \lesssim t_{LS}\right) \sim \Omega \tau^{2/3} \end{split}$$

Multiply correction for $\tau \gtrsim t_B$

$$(1 - \exp\left[-(t_{1,2}/\tau)^{\alpha_{1,2}}\right])$$

y_c from uniform decay

$$\delta y_c \left(t_{EC} \lesssim au \lesssim t_{MRE}
ight) \sim \Omega au^{1/2} \ \delta y_c \left(t_{MRE} \lesssim au \lesssim t_{LS}
ight) \sim \Omega au^{2/3}$$

Add early region, take $t_{EC} \rightarrow t_B$ $\delta_{V_c} (\tau \leq t_D) \approx \Omega \tau^{1/2} e^{-(t_0/\tau)^{5/4}}$

$$by_c (\tau \gtrsim \iota_B) \sim \Omega \tau + e^{-c_0(\tau)}$$

Multiply correction for $au\gtrsim t_B$

$$(1 + (t_{1,2}/\tau)^{\alpha_{1,2}})^{-1}$$

Intermediate Greens functions suggested in Chluba 1304.6120

Analytic contstraints on multiple decaying particles

$$\begin{split} D_{\mu} &> \sum_{t_{e} < \tau_{i} < t_{B\mu}} A_{\mu} \Omega_{i} (\tau_{i}/t_{0\mu})^{1/2} \exp\left[-\left(t_{0\mu}/\tau_{i}\right)^{5/4}\right] \\ &+ \sum_{t_{B\mu} < \tau_{j} < t_{MRE}} B_{\mu} \Omega_{j} (\tau_{j}/t_{1\mu})^{1/2} \left(1 - \exp\left[-\left(t_{1\mu}/\tau_{j}\right)^{\alpha_{1\mu}}\right]\right) \\ &+ \sum_{t_{MRE} < \tau_{k} < t_{LS}} C_{\mu} \Omega_{k} (\tau_{k}/t_{2\mu})^{2/3} \left(1 - \exp\left[-\left(t_{2\mu}/\tau_{k}\right)^{\alpha_{2\mu}}\right]\right), \\ D_{y} &> \sum_{t_{e} < \tau_{i} < t_{By}} A_{y} \Omega_{i} (\tau_{i}/t_{0y})^{1/2} \exp\left[-\left(t_{0y}/\tau_{i}\right)^{5/4}\right] \\ &+ \sum_{t_{By} < \tau_{j} < t_{MRE}} B_{y} \Omega_{j} (\tau_{j}/t_{1y})^{1/2} \left(1 + \left(t_{1y}/\tau_{j}\right)^{\alpha_{1y}}\right)^{-1} \\ &+ \sum_{t_{MRE} < \tau_{k} < t_{LS}} C_{y} \Omega_{k} (\tau_{k}/t_{2y})^{2/3} \left(1 + \left(t_{2y}/\tau_{k}\right)^{\alpha_{2y}}\right)^{-1} \end{split}$$

Extend to ensemble of particles

Can reporoduce single component limits with analytic fits

Figure: Limits on EM injection from μ -type distortion and y-type distortion.

Consider log mass spacing, thermally produced ensemble

$$m_i = m_0 \left(\frac{\Delta m}{\text{GeV}}\right)^i \quad \Omega_i = \frac{f_{EM}}{C_X} \Omega_{DM} \sigma_{DM} m_i^2 \quad \Gamma_i = \frac{m_i^3}{\Lambda^2}$$

Freeze out with universal C_X

- Self annihilation cross section $\sigma_i \sim C_X/m_i^2$
- Normalized to current relic abundance $\Omega_{DM} \simeq 0.25$, with $\sigma_{DM} \simeq 1 \, {\rm pb}$
- *f_{EM}* is branching fraction to EM particles

${\rm Decays} \to \gamma \gamma, \ {\rm universal} \ {\rm coupling}$

- Assume width $\sim m_i^3$, dimensionally need Λ^{-2}
- For simplicity, assume $m_0 = 10 \, {
 m GeV}$, but constraints valid so long as $m_0 \gg T_{therm}$
- For ensemble of *n* particles, $\{\Delta m, f_{EM}/C_X, \Lambda\}$

What does an ensemble with n = 3 look like?

Set limits on f_{EM}/C_X as functions of Λ and Δm

Figure: A with $\Delta m = 2 \,\text{GeV}$ constant and Δm with $\Lambda = 3 \times 10^{19} \,\text{GeV}$ constant.

Now try for n = 9 packed into same mass range

Figure: Λ with $\Delta m = 2^{1/4} \text{ GeV}$ constant and Δm with $\Lambda = 3 \times 10^{19} \text{ GeV}$ constant.

Can look at light elements and/or DDM in more detail

Dedicated light element code

- Uniform decay can map onto arbitrary injection history
- Include hadronic decays
- Make code publicly available

Look at DDM ensembles

- Indirect detection and CMB ionization become dominant
- Highly depedent on decay channels
- Use direct detection and this work to constrain DDM

Figure: Limits on abundances of EM decaying particles, see Slatyer 1211.0283.

Thank you!

Interaction rates suppressed by new physics at high scales

$$\mathcal{L}_{QCD} \in rac{ heta}{16\pi^2} F^{a}_{\mu
u} ilde{F}^{\mu
u a}$$

Gravity mediated SUSY breaking	Break PQ symmetry to cancel $ heta$	
 Stable neutralino LSP is WIMP dark matter candidate 	 Axion field left over from solving strong CP problem 	
 Weak scale gravitino NLSP 	 Can take almost any mass 	
• Decays through $ { ilde G} ightarrow { ilde \chi} \gamma $	• Decays through $a \to \gamma \gamma$	

Decays before matter domination underconstrained

Figure: Gravitino lifetimes for several canonical mSUGRA cases, see Kawasaki et. al. 0804.3745.

Figure: Limits on abundances of EM decaying particles, see Slatyer 1211.0283.

Multicomponent ensemble that balances Γ_X and Ω_X

