
1COSMO-17 in Paris    - Yuichiro Tada -    30.08.2017

Stochastic Formalism in  
Curved Field Space

Yuichiro Tada  (IAP) 

w/ Lucas Pinol and Sébastien Renaux-Petel 

in preparation

/13



Yuichiro Tada 2

Current situation of inflation

0

1000

2000

3000

4000

5000

6000

D
T
T
[µ
K
2
]

30 500 1000 1500 2000 25002 10

w/ only 6 paras. !bh2, !ch2, H0, τ, ns, As 

fit more than 
2000 points

Planck 2015

Currently inflation mechanism has achieved great success, but…

/13



Yuichiro Tada 2

Current situation of inflation

0

1000

2000

3000

4000

5000

6000

D
T
T
[µ
K
2
]

30 500 1000 1500 2000 25002 10

w/ only 6 paras. !bh2, !ch2, H0, τ, ns, As 

fit more than 
2000 points

Planck 2015

Currently inflation mechanism has achieved great success, but…

A&A 594, A20 (2016)

Fig. 12. Marginalized joint 68% and 95% CL regions for ns and r at k = 0.002 Mpc�1 from Planck compared to the theoretical predictions of
selected inflationary models. Note that the marginalized joint 68% and 95% CL regions have been obtained by assuming dns/dln k = 0.

(Starobinsky 1980). No-scale supergravity (Ellis et al. 2013a),
the large-field regime of superconformal D-term inflation
(Buchmüller et al. 2013), or recent developments in minimal su-
pergravity (Farakos et al. 2013; Ferrara et al. 2013b) can lead
to a generalization of the potential in Eq. (55) (see Ketov &
Starobinsky 2011 for a previous embedding of R2 inflation in
F(R) supergravity). The potential in Eq. (55) can also be gener-
ated by spontaneous breaking of conformal symmetry (Kallosh
& Linde 2013b). This inflationary model has ��2 ⇡ 0.8 (0.3)
larger than the base ⇤CDM model with no tensors for wint = 0
(for wint allowed to vary). We obtain 54 < N⇤ < 62 (53 < N⇤ <
64) at 95% CL for wint = 0 (for wint allowed to vary), compati-
ble with the theoretical prediction, N⇤ = 54 (Starobinsky 1980;
Vilenkin 1985; Gorbunov & Panin 2011).

↵ attractors

We now study two classes of inflationary models motivated by
recent developments in conformal symmetry and supergravity
(Kallosh et al. 2013). The first class has been motivated by con-
sidering a vector rather than a chiral multiplet for the inflaton in
supergravity (Ferrara et al. 2013a) and corresponds to the poten-
tial (Kallosh et al. 2013)
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To lowest order in the slow-roll approximation, these models
predict r ⇡ 64/[3↵(1 � e

p
2�/(
p

3↵Mpl))2] and ns � 1 ⇡ �8(1 +
e
p

2�/(
p

3↵Mpl))/[3↵(1 � e
p

2�/(
p

3↵Mpl))2] based on an inflationary
trajectory characterized by N ⇡ g(�/Mpl) � g(�end/Mpl) with
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3↵ � p6↵x)/4. The relation between N and �
can be inverted through the use of the Lambert functions, as car-
ried out for other potentials (Martin et al. 2014). By sampling

log10(↵2) with a flat prior over [0, 4], we obtain log10(↵2) < 1.7
(2.0) at 95% CL and a Bayes factor of �1.8 (�2) for wint = 0 (for
wint allowed to vary).

The second class of models has been called super-conformal
↵ attractors (Kallosh et al. 2013) and can be understood as orig-
inating from a di↵erent generating function with respect to the
first class. This second class is described by the following poten-
tial (Kallosh et al. 2013):
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This is the simplest class of models with spontaneous breaking
of conformal symmetry, and for ↵ = m = 1 reduces to the origi-
nal model introduced by Kallosh & Linde (2013b). The potential
in Eq. (57) leads to the following slow-roll predictions (Kallosh
et al. 2013):

r ⇡ 48↵m
4mN2 + 2Ng(↵,m) + 3↵m

, (58)

ns � 1 ⇡ � 8mN + 6↵m + 2g(↵,m)
4mN2 + 2Ng(↵,m) + 3↵m

, (59)

where g(↵,m) =
p

3↵(4m2 + 3↵). The predictions of this second
class of models interpolate between those of a large-field chaotic
model, V(�) / �2m, for ↵ � 1 and the R2 model for ↵ ⌧ 1.

For ↵ we adopt the same priors as for the previous class in
Eq. (56). By fixing m = 1, we obtain log10(↵2) < 2.3 (2.5) at
95% CL and a Bayes factor of �2.3 (�2.2) for wint = 0 (when
wint is allowed to vary). When m is allowed to vary as well with
a flat prior in the range [0, 2], we obtain 0.02 < m < 1 (m < 1)
at 95% CL for wint = 0 (when wint is allowed to vary).

A20, page 18 of 65
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nal model introduced by Kallosh & Linde (2013b). The potential
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class of models interpolate between those of a large-field chaotic
model, V(�) / �2m, for ↵ � 1 and the R2 model for ↵ ⌧ 1.

For ↵ we adopt the same priors as for the previous class in
Eq. (56). By fixing m = 1, we obtain log10(↵2) < 2.3 (2.5) at
95% CL and a Bayes factor of �2.3 (�2.2) for wint = 0 (when
wint is allowed to vary). When m is allowed to vary as well with
a flat prior in the range [0, 2], we obtain 0.02 < m < 1 (m < 1)
at 95% CL for wint = 0 (when wint is allowed to vary).
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selected inflationary models. Note that the marginalized joint 68% and 95% CL regions have been obtained by assuming dns/dln k = 0.
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pergravity (Farakos et al. 2013; Ferrara et al. 2013b) can lead
to a generalization of the potential in Eq. (55) (see Ketov &
Starobinsky 2011 for a previous embedding of R2 inflation in
F(R) supergravity). The potential in Eq. (55) can also be gener-
ated by spontaneous breaking of conformal symmetry (Kallosh
& Linde 2013b). This inflationary model has ��2 ⇡ 0.8 (0.3)
larger than the base ⇤CDM model with no tensors for wint = 0
(for wint allowed to vary). We obtain 54 < N⇤ < 62 (53 < N⇤ <
64) at 95% CL for wint = 0 (for wint allowed to vary), compati-
ble with the theoretical prediction, N⇤ = 54 (Starobinsky 1980;
Vilenkin 1985; Gorbunov & Panin 2011).
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We now study two classes of inflationary models motivated by
recent developments in conformal symmetry and supergravity
(Kallosh et al. 2013). The first class has been motivated by con-
sidering a vector rather than a chiral multiplet for the inflaton in
supergravity (Ferrara et al. 2013a) and corresponds to the poten-
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V(�) = ⇤4
✓

1 � e�
p

2�/
⇣p

3↵Mpl
⌘

◆2
. (56)

To lowest order in the slow-roll approximation, these models
predict r ⇡ 64/[3↵(1 � e

p
2�/(
p

3↵Mpl))2] and ns � 1 ⇡ �8(1 +
e
p

2�/(
p

3↵Mpl))/[3↵(1 � e
p

2�/(
p

3↵Mpl))2] based on an inflationary
trajectory characterized by N ⇡ g(�/Mpl) � g(�end/Mpl) with
g(x) = (3↵4e

p
2x/
p

3↵ � p6↵x)/4. The relation between N and �
can be inverted through the use of the Lambert functions, as car-
ried out for other potentials (Martin et al. 2014). By sampling

log10(↵2) with a flat prior over [0, 4], we obtain log10(↵2) < 1.7
(2.0) at 95% CL and a Bayes factor of �1.8 (�2) for wint = 0 (for
wint allowed to vary).

The second class of models has been called super-conformal
↵ attractors (Kallosh et al. 2013) and can be understood as orig-
inating from a di↵erent generating function with respect to the
first class. This second class is described by the following poten-
tial (Kallosh et al. 2013):

V(�) = ⇤4 tanh2m

0

B

B

B

B

B

@

�p
6↵Mpl

1

C

C

C

C

C

A

· (57)

This is the simplest class of models with spontaneous breaking
of conformal symmetry, and for ↵ = m = 1 reduces to the origi-
nal model introduced by Kallosh & Linde (2013b). The potential
in Eq. (57) leads to the following slow-roll predictions (Kallosh
et al. 2013):

r ⇡ 48↵m
4mN2 + 2Ng(↵,m) + 3↵m

, (58)

ns � 1 ⇡ � 8mN + 6↵m + 2g(↵,m)
4mN2 + 2Ng(↵,m) + 3↵m

, (59)

where g(↵,m) =
p

3↵(4m2 + 3↵). The predictions of this second
class of models interpolate between those of a large-field chaotic
model, V(�) / �2m, for ↵ � 1 and the R2 model for ↵ ⌧ 1.

For ↵ we adopt the same priors as for the previous class in
Eq. (56). By fixing m = 1, we obtain log10(↵2) < 2.3 (2.5) at
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wint is allowed to vary). When m is allowed to vary as well with
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Langevin EoM by in-in formalism

7

Effective action Γ for ⟨in|OIR|in⟩ is given by path integral on closed time path
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• UV modes: quantum but perturbative (quadratic)

• IR modes: classical (Z is mainly given around ⟨φIR⟩) but non-perturbative

• correction terms for IR effective action can be interpreted as noise
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c.f. UV EoM: ⇤I
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�IR = S(0)+ � S(0)� + SIA

SIA =
i

2

Z
d4xd4x0 �

⇡

�
I (x) ��
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Influence action SIA is pure imaginary

Gaussian weight

eiSIA = e�ImSIA =

Z
D⇠P [⇠]ei

R
d4

x(⇡�
I ⇠

I
���

�
I ⇠

I
⇡)
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Se↵ = S

(0)+ � S

(0)� +

Z
d4x(⇡�

I ⇠

I
� � �

�
I ⇠

I
⇡)

h⇠I(x)⇠J(x0)i =
Z

D⇠P [⇠]⇠I(x)⇠J(x
0) = ⇧I

J(x, x
0)

�S

���

����
��=0

= 0

SIA does not include NIR

Friedmann eq.:
3M2

PlH2

N2
IR

=
1

2a6
GIJ ⇡̄I ⇡̄J + V
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8
><

>:

˙̄�I =
NIR

a3
GIJ ⇡̄J + ⇠I�

Dt⇡̄I = �a3NIRVI + ⇠⇡I � �J
IK ⇡̄J⇠

K
� Dt⇡̄I = ˙̄⇡I � �J

IK
˙̄�K ⇡̄J
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• Stochastic formalism in curved field space by the in-in formalism 

• IR-UV coupling should be determined to recover the original 

propagator (Tanaka & Tokuda 2017) 

• Friedmann constraint still holds for each local patch in the 

stochastic formalism 

• Future work: analyze the geometrical destabilization w/ this 

stochastic formalism

Yuichiro Tada


