

Primordial Black Holes from Inflaton and Spectator Field Perturbations

Tommi Tenkanen in collaboration with B. Carr and V. Vaskonen

Queen Mary University of London

Talk based on arXiv: 1705.05567 and 1706.03746

COSMO'17 31/8/2017

E-mail: t.tenkanen@qmul.ac.uk

Tommi Tenkanen

Primordial Black Holes from Inflaton and Spec

- Great deal of evidence for the existence of dark matter: rotational velocity curves of galaxies, Bullet Cluster, acoustic peaks in the Cosmic Microwave Background (CMB) radiation spectrum...
- Still the nature of dark matter is unknown

- What is the correct explanation for the invisible matter content observed in the universe? Does the dark matter particle exist? Or are there many dark matter particles?
- Are they WIMP's, FIMP's, SIMP's, GIMP's, PIDM's, WISP's, ALP's, Wimpzillas, or sterile neutrinos? Or should gravity be modified?
- But... what if DM does not consist of new particles but primordial black holes (PBHs)?

- PBHs can easily form in the early Universe from sufficiently large density perturbations - already within the GR
- ► In a radiation-dominated Universe, they can form when large enough perturbations ($\delta \gtrsim 0.5$) enter the horizon (tails of the Gaussian $\delta_{\mathbf{k}}$'s).
- ▶ In a matter-dominated Universe, perturbations grow as $\delta \propto a$ ⇒ if there was enough time, even small perturbations can grow large, $\delta \sim 1$.

- Q: Do you believe in PBHs?A: Well, it is not a matter of belief.
- Q: Why do not they form in today's Universe?
 A: They could, but the formation probability is negligible.
- Q: Why do not pressure effects etc. prevent them from forming?
 A: They do, not all regions collapse.

Primordial Black Holes – Why are they interesting?

- ► Especially the LIGO observation of O(10)M_☉ BH mergers is interesting for PBHs
- PBHs might constitute all DM, although this possibility is very constrained (see 1705.05567 and the next talk!)

- In any case, PBHs provide for an effective way to constrain curvature perturbations at small scales
- Let us assume that the are two components that contribute to the curvature power spectrum: the inflaton φ and a spectator field s

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{P}_{\mathcal{R},\varphi}(k) + \mathcal{P}_{\mathcal{R},s}(k)$$

Primordial Power Spectrum with two components

The inflaton perturbations produce a nearly flat spectrum at small k,

$$\mathcal{P}_{\mathcal{R},\varphi}(k) = A\left(rac{k}{k_*}
ight)^{n-1+rac{1}{2}\mathrm{d}n/\mathrm{d}\ln k \ln\left(rac{k}{k_*}
ight)},$$

where k_* is a pivot scale, $A \simeq 10^{-9}$, and $n \simeq 0.968$.

Perturbations in the s field dominate at large k

$$\mathcal{P}_{\mathcal{R},s}(k) = A_s \left(\frac{k}{k_*}\right)^{n_s - 1 + \frac{1}{2} \mathrm{d}n_s/\mathrm{d}\ln k \ln\left(\frac{k}{k_*}\right)}$$

The total power spectrum

The total curvature power spectrum (black solid line).

Black dashed line: inflaton. Grey dashed lines: spectator field.

Primordial Black Holes from Inflaton and Spec

- Assume there was an early matter-dominated phase (MD) at $T > T_{BBN} \simeq O(1)$ MeV.
- Possible cause: reheating, massive metastable particles...
- ▶ PBH formation starts when δ grows large enough¹($\delta \sim$ 1) and ends when the MD ends
- ▶ In MD, PBHs form with an energy $\rho_{\text{PBH}}(M)/\rho_{\text{tot}} \simeq 0.01\delta(M)^5$

Recall that in MD $\delta \propto a$.

Primordial Black Hole formation: results

Five parameters: A_s , n_s , $dn_s/dlnk$, T_{MD} , T_{reh} (+ dn/dlnk)

An example of the total curvature power spectrum (left) and the corresponding PBH mass function (right).

Constraints on primordial perturbations

Left panel: Constraints on monochromatic PBH mass function.

Right panel: constraints on the amplitude of power spectrum. Gray dashed line: RD case. Red lines: MD case.

Thin black line: blue-tilted spectator field. Thick black line: inflaton with positive running.

Primordial Black Holes from Inflaton and Spec

Constraints on running of the spectral tilt

We derive new constraints on the running of the inflaton field's spectral tilt. Red lines: Planck results.

For constraints on spectral features of the spectator field and PBH DM, see 1706.03746.

- Primordial black holes are a compelling alternative to particle DM and may constitute all DM
- Cosmological and astrophysical observations provide a valuable resource on testing different dark matter models

 ▶ PBHs provide for an effective way to constrain curvature perturbations at small scales
 ⇒ we placed new constraints on the running of the spectral tilt, dn/dlnk ≤ 0.001.