Tensions related to the lensing of CMB power spectra

F. Couchot, S. Henrot-Versillé, O. Perdereau, S. Plaszczynski, B. Rouillé d'Orfeuil, M. Spinelli, M. Tristram

- Relieving tensions related to the lensing of the CMB temperature power-spectra [Couchot et al., A&A 597 A126 (2017), arXiv:1510.07600]
- Cosmology with the CMB temperature-polarization correlation [Couchot et al., A&A 602 A41 (2017), arXiv:1609.09730]
- Cosmological constraints on the neutrino mass including systematic uncertainties [Couchot et al., A&A forthcoming, arXiv:1703.10829]

The A_L parameter

• weak lensing enters the prediction of the CMB spectrum through a convolution of the unlensed spectrum with the lensing potential power spectrum C_{ℓ}^{Ψ}

smooth out the acoustic peaks

• The A_L parameter is a fudge factor defined as:

- $-A_L = 0$: weak lensing ignored
- $-A_L = 1$: standard ΛCDM

$$C^{\Psi}_{\ell} \to A_L C^{\Psi}_{\ell}$$

 Measuring A_L ≠ 1 indicates either a problem in the model (e.g. modification of the gravity) or remaining systematics in the data

CMB lensing

• From Planck gravitational lensing measurements, overall lensing amplitude estimate is consistent with our fiducial LCDM model

[Planck 2015 results. XV. A&A, 594, A15 (2016)]

A_L from Planck

• But from Planck CMB anisotropies spectra, LCDM+AL gives

$A_{\rm L}=1.22\pm0.10$

[Planck 2015 results. XIII, A&A 594, A13 (2016)]

Where does this tension come from ? What can we do to relieve it ?

COSMO17, Paris, Sep. 2017

Setting the stage

Planck constraints from CMB anisotropies are derived from

theoretical model (Boltzmann solver)

- CAMB, Lewis&Challinor (camb.info)
- CLASS, J. Lesgourgues (class-code.net) [arXiv:1104.2932]

CMB data (two-component likelihoods)

- **low**- ℓ (lowTEB)

temperature and polarisation map based likelihood

high-l (Plik but also Hillipop, CamSpec, Mspec)
 gaussian likelihood (temperature & TE/EE polarisation)

Statistical analysis (parameter estimation)

- Bayesian inference using Monte Carlo Markov Chains to explore the likelihood function (usual in cosmology)
- Profile likelihoods (more common in particle physics)

A_L from Plik+lowTEB

• Results from Planck:

[Planck 2015 results. XIII, A&A 594, A13 (2016)]

 $A_{\rm L} = 1.22 \pm 0.10$ (Plik+lowTEB, camb/MCMC)

• Theoretical impact from the Boltzmann solver:

 $A_{\rm L} = 1.24 \pm 0.10$ (Plik+lowTEB, class/MCMC)

• Systematic impact from the statistical analysis:

 $A_{\rm L} = 1.26^{+0.11}_{-0.10}$ (Plik+lowTEB, class/profile)

- It theoretical uncertainties (but low level)
- ✓ small volume effect (difference between best-fit and posterior maximum)

Where does this tension come from ? What can we do to relieve it ?

The Hillipop high-l likelihood

One of the high- ℓ Planck likelihood (ℓ >50) in temperature and polarisation based on cross-spectra of the 100, 143 and 217GHz maps of the 2015 Planck release

$$C_{\ell}^{XY} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m}^{X} a_{\ell m}^{*Y}$$

- regions with high level of foregrounds contamination are masked before computing spectra
- foregrounds residuals are modeled in Hillipop as power spectra templates from Planck measurements
 - Galactic emission (dust)
 - Galaxy clustering (CIB)
 - SZ (thermal, kinetic and SZxCIB)
 - Point sources

[Planck 2015 results. XI, A&A 594, A11 (2016)] [Couchot et al., A&A 602 A41 (2017), arXiv:1609.09730]

The high- ℓ likelihoods

• The main differences with Plik* ?

1.we use all 15 cross-spectra^{**} from 6 maps v.s. only 7 selected cross-spectra in Plik

- 2. intercalibration coefficients are defined at the map level
 - v.s. spectra level in Plik
- 3.Point sources are identified and separated from high latitude cirrus dust clouds before masking
 - v.s. mixed in Plik masks
- 4.residual foregrounds are modeled using Planck measurements for SED and spectral shape

v.s. analytical models for Plik with additional constraint in the SZ sector derived from ACT data: $A^{SZ} = A^{kSZ} + 1.6A^{tSZ} = 9.5 \mu K^2$ and a dispersion $3\mu K^2$

(*) [Planck 2015 results. XI, A&A 594 A11 (2016)] (**) [Tristram et al., MNRAS 358 833 (2005)]

COSMO17, Paris, Sep. 2017

ACDM results

• Comparison between Hillipop and Plik

Parameters	Plik + lowTEB	Hillipop T + lowTEB
$\Omega_{ m b} h^2$	0.02225 ± 0.00023	0.02220 ± 0.00022
$\Omega_{ m c} h^2$	0.1197 ± 0.0022	0.1196 ± 0.0022
$100\theta_{\rm s}$	1.04188 ± 0.00044	1.04178 ± 0.00044
au	0.078 ± 0.019	0.070 ± 0.018
$log(10^{10}A_{\rm s})$	3.089 ± 0.036	3.071 ± 0.035
n _s	0.9655 ± 0.0062	0.9659 ± 0.0060

[Planck 2015 results. XI, A&A 594, A11 (2016)]

A_L profile likelihood

[Couchot et al., A&A 597 A126 (2017), arXiv:1510.07600]

ACDM results

• Comparison between Hillipop and Plik

_			
-	Parameters	Plik + lowTEB	Hillipop T + lowTEB
-	$\Omega_{ m b}h^2$	0.02225 ± 0.00023	0.02220 ± 0.00022
	$\Omega_{ m c} h^2$	0.1197 ± 0.0022	0.1196 ± 0.0022
	1000	1.04188 ± 0.00044	1.04178 ± 0.00044
au		0.078 ± 0.019	0.070 ± 0.018
lo	$g(10^{10}A_{\rm s})$	3.089 ± 0.036	3.071 ± 0.035
	n _s	0.9000 ± 0.0002	0.9039 ± 0.0000

- au mainly driven by the low- ℓ data
- au and $A_{
 m s}$ are correlated through the amplitude of spectra $C_\ell \propto A_{
 m s} e^{-2 au}$

why different ?

tension between low- ℓ and high- ℓ data ?

optical depth profile likelihoods

M. Tristram

optical depth and A_{L}

low- ℓ : pulls $\tau \searrow$ high- ℓ : amplitude $C_{\ell} \propto A_{\rm s} e^{-2\tau} \rightarrow A_{\rm s} \searrow$ high- ℓ : to preserve lensing information $(C_{\ell}^{\Phi} \propto A_{\rm s} A_{\rm L}) : A_{\rm L} \nearrow$

COSMO17, Paris, Sep. 2017

additional data

• combination with CMB lensing likelihood

 $A_{\rm L} = 1.05 \pm 0.06$ (Plik+lowTEB+lensing)

 $A_{\rm L} = 1.06 \pm 0.06$ (Hillipop+lowTEB+lensing)

– with lower optical depth ($\tau = 0.066 \pm 0.016$)

• combination with Very-High-*l* CMB data (ACT+SPT)

 $A_{\rm L} = 1.03 \pm 0.08$ (Hillipop+lowTEB+VHL)

- foregrounds better constrained
- optical depth closer to low- ℓ likelihoods ($\tau = 0.059 \pm 0.017$)

Parameter	Hillipop+lowTEB	
	+VHL	
$\Omega_{ m b}h^2$	0.02200 ± 0.00019	
$\Omega_{ m c}h^2$	0.1200 ± 0.0020	
$100\theta_{\rm s}$	1.04200 ± 0.00040	
τ	0.059 ± 0.017	
<i>n</i> _s	0.9630 ± 0.0054	
$\ln(10^{10}A_s)$	3.045 ± 0.032	
Ω_m	0.315 ± 0.012	
H_0	67.19 ± 0.88	
σ_8	0.811 ± 0.013	

neutrinos

• tension on A_L shows up on the neutrino sector

– high value for $A_L \rightarrow artificially$ tighter constraints on $\Sigma m \nu$

[Couchot et al., A&A forthcoming, arXiv:1703.10829]

• tension on A_L shows up on the neutrino sector

– high value for $A_L \rightarrow artificially tighter constraints$ on $\Sigma m \nu$

	$\Lambda CDM+$	$\Lambda CDM+$
PlanckTT+lowTEB	$\Sigma m_{ u}$	AL
BAO+SNIa	limit (eV)	
hlpTT	0.18	1.16 ± 0.09
hlpTTps	0.20	$1.14{\pm}0.08$
PlikTT	0.17	$1.19{\pm}0.09$
PlanckTT+lowTEB	Σm_{ν}	A_{L}
BAO+SNIa+lensing	limits (eV)	
hlpTT	0.21	1.06 ± 0.05
hlpTTps	0.21	1.06 ± 0.06
PlikTT	0.23	1.05 ± 0.06

• only when adding to Planck data:

- new version of BAO data (DR12)
- optical depth from [Planck Collaboration Int. XLVII 2016] $au_{
 m reio} = 0.058 \pm 0.012$

we can obtain

Σmv < 0.17 [incl. 0.01 (foreground syst.)] eV at 95% CL

[Couchot et al., A&A forthcoming, arXiv:1703.10829]

Conclusions

- We investigated the tension on A_L using Planck CMB anisotropie data
- This can be explained neither by theoretical uncertainties nor by volume effects in the likelihood sampling (difference between bestfit and posterior maximum)
- Comparing with the alternative Planck high-*l* likelihood Hillipop (including different foreground models and slight changes in the data treatment), we found a lower A_L indicating an effect from systematic residuals (2.6σ with Plik+lowTEB, 1.6σ with Hillipop+lowTEB)
- We showed that this tension is directly related to a tension on τ
 between low-ℓ and high-ℓ likelihoods (2.2σ with Plik, 1.3σ with Hillipop)
- Impact on cosmological parameters
 - ACDM: a significant effect on the reionization optical depth
 - extensions: upper limit on neutrino masses is affected (artificially tighter)

end