Small field models with

P

Ben-Gurion University of the Negev

Motivation

The hunt for Primordial Gravitational Waves

- Alternatives to large field models.
- Fundamental Physics?

Ben-Dayan, Brustein JCAP 1009, 007 (2010)

Outline

I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and exact calculation
III.Summary and outlook
I. Recent Results
- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

5 Degree polynomial model

$$
V(\phi)=V_{0}\left(1+\sum_{p=1}^{5} a_{p} \phi^{p}\right)
$$

$$
\stackrel{\Downarrow}{V(\phi)=V_{0}}\left(1-\sqrt{\frac{r_{0}}{8}} \phi\right.
$$

Results

$$
\left.+\frac{\eta_{0}}{2} \phi^{2}+\frac{\alpha_{0}}{3 \sqrt{2 r_{0}}} \phi^{3}+a_{4} \phi^{4}+a_{5} \phi^{5}\right)
$$

I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

Results

Why look at these models?

I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

Results

6 Degree polynomial model

n_{s}

Slide 6/15
I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

Results

5 Degree polynomial model

Slide $7 / 15$
I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

Slide $8 / 15$

Results
5 Degree polynomial model

I. Recent Results

Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

5 Degree polynomial model

I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

OOPS!... Something's wrong

Discrepancy between predictions and calculations

I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

OOPS!... Something's wrong

Discrepancy between predictions and calculations

I. Recent Results

- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between predictions and calculations
III. Summary and outlook

Summary and outlook

What to take away from all of this?

- Small field models can produce GW.
- There is much more in a potential than the first derivative.
- It ain't over 'till it's over.
I. Recent Results
- The model
- Covering the plane of interest
- Finding the most probable member
II. Discrepancy between analytics and numerics
III. Summary and outlook

Summary and outlook

In the works

- Find a better analytic expression from first principles.
- Complete work on $r=0.05$ small field models.
- Other checks on small field models viability.

Questions?

Thank you!

Some Theory

Observables - in theory

- Observables in potential derivative language

$$
\begin{array}{rlrl}
n_{s} \simeq 1 & -6 \varepsilon_{V, 0}+2 \eta_{V, 0} & \varepsilon=\frac{1}{2}\left(\frac{V^{\prime}}{V}\right)^{2} \\
& +2\left[\frac{\eta_{V, 0}^{2}}{3}-\left(\frac{5}{3}-12 b\right) \varepsilon_{V, 0}^{2}\right. & \eta=\frac{V^{\prime \prime}}{V} \\
& \left.-(8 b+1) \varepsilon_{V, 0} \eta_{V, 0}+\left(b+\frac{1}{3}\right) \xi_{V, 0}^{2}\right], & \xi^{2}=\frac{V^{\prime} V^{\prime \prime \prime}}{V^{2}} \\
n_{r u n} \simeq 16 \varepsilon_{V, 0} \eta_{V, 0}-24 \varepsilon_{V, 0}^{2}-2 \xi_{V, 0}^{2} &
\end{array}
$$

