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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is

located to the right of the line M (¢); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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Hubble Radius vs. Horizon
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Horizon: Forward light cone of a point on the initial
Introduction Cauchy Surface.
Scenarios . .

@ Horizon: region of causal contact.
Perturbations
o Hubble radius: Iy(t) = H~'(t) inverse expansion rate.
Challenges o Hubble radius: local concept, relevant for dynamics of

cosmological fluctuations.

@ In Standard Big Bang Cosmology: Hubble radius =
horizon.

o In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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the Hubble radius at early times in order for a causal

Challenges . . . .
generation mechanism of fluctuations to be possible.

o Squeezing of fluctuations on super-Hubble scales in
order to obtain the acoustic oscillations in the CMB
angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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Scenarios o Exponential increase in horizon relative to Hubbe
Perturbations radius_

o Fluctuations originate on sub-Hubble scales.
hallenges
oo o Long period of super-Hubble evolution.

o Time translation symmetry — scale-invariant spectrum
(Press, 1980).
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Fluctuations originate on sub-Hubble scales.
Long period of super-Hubble evolution.

Curvature fluctuations starting from the vacuum
acquire a scale-invariant spectrum on scales which exit
the Hubble radius during matter domination (“matter
bounce scenario”).

e ey o Entropy fluctuations starting from the vacuum induce

a scale-invariant spectrum in the Ekpyrotic bounce
Conclusions Scenario.
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Addressing the Criteria
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Horizon given by the duration of the quasi-static phase,

Introduction

Scenarios Hubble radius decreass suddenly at the phase
Perturbations transition — horizon > Hubble radius at the beginning
of the Standard Big Bang phase.

Al o Fluctuations originate on sub-Hubble scales.

o Long period of super-Hubble evolution.

@ Curvature fluctuations starting from thermal matter
inhomogeneities acquire a scale-invariant spectrum if
the thermodynamics obeys holographic scaling.
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Theory of Cosmological Perturbations: Basics

Challenges
A Cosmological fluctuations connect early universe theories

berger with observations

Introduction

o Fluctuations of matter — large-scale structure

Scenarios

o Fluctuations of metric — CMB anisotropies
o N.B.: Matter and metric fluctuations are coupled

Perturbations
Ba:

enges

Key facts:

©

1. Fluctuations are small today on large scales

— fluctuations were very small in the early universe
— can use linear perturbation theory

2. Sub-Hubble scales: matter fluctuations dominate
Super-Hubble scales: metric fluctuations dominate

Conclusions
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Introduction dsz = a2[(1 + 2¢)d772 - (1 — 2¢)dX2]
Scenarios 0 = g+ dp

Perturbations

Note: ¢ and d¢ related by Einstein constraint equations
Step 2: Expand the action for matter and gravity to second
order about the cosmological background:
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o oscillations on sub-Hubble scales
@ squeezing on super-Hubble scales vy ~ z

Quantum vacuum initial conditions:

Conclusions Vk(ni) — (” 2k)_1
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More on Perturbations |
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R. Branden-

berger In the case of adiabatic fluctuations, there is only one
degree of freedom for the scalar metric inhomogeneities. It
is

Introduction
Scenarios

Perturbations
¢=2zv
Ml Its physical meaning: curvature perturbation in comoving
gauge.
@ In an expanding background, ¢ is conserved on
souces super-Hubble scales.
Conclusions @ In a contracting background, ¢ grows on super-Hubble
scales.
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R. Branden- In the case of entropy fluctuations there are more than

berger

one degrees of freedom for the scalar metric
nifoduction inhomogeneities. Example: extra scalar field.
Scenarios 0 g -
o o Entropy fluctuations seed an adiabatic mode even on
Bades super-Hubble scales.
Challenges 0
é= P 55

p+p
o Example: topological defect formation in a phase
3 transition.

Conclusions o Example: Axion perturbations when axions acquire a

mass at the QCD scale (M. Axenides, R.B. and M.
Turner, 1983).
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Gravitational Waves
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Scenarios

Perturbations o hji(x, t) transverse and traceless

o Two polarization states

Challenges
"

2

hj(X,t) = ha(X, t)ed

a=1

o At linear level each polarization mode evolves
Conclusions mdependenﬂy
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I troduction Canonical variable for gravitational waves:

Scenarios

Per.lurbanons U(X, t) = a(t)h(X, t)
Equation of motion for gravitational waves:

hallenges
nflatior

U

1 a
Uy + (kz—g)uk = 0.

Squeezing on super-Hubble scales, oscillations on
sub-Hubble scales.
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berger

o U o V.
IS::?:;: @ Thus, generically models with dominant adiabatic
. fluctuations lead to a large value of r. A large value of r
is not a smoking gun for inflation.

Challenges o During a phase transition EoS changes and u evolves

differently than v

@ — Suppression of r.

o This happens during the inflationary reheating
transition.

o Simple inflation models typically predict very small
value of r.
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N.B. Perturbations originate as quantum vacuum
fluctuations.
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Origin of Scale-Invariance in Inflation
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R Branden: o Initial vacuum spectrum of ¢ (¢ ~ v): (Chibisov and
Mukhanov, 1981).

Introduction
icena;wos Pg(k) = k3|<(k)|2 ~ k2
erturbations
@ v ~ z ~ aon super-Hubble scales
hallanges o At late times on super-Hubble scales
Pc(k, t) = Pe(k, ti(k))( 2 )2 ~ k2a(t(k))~2
a(ti(k)

Conclusions

o Hubble radius crossing: ak—!' = H~1
0 — P¢(k,t) ~ const
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sopcts o At late times on super-Hubble scales

Challenges

Palk, ) = & ()P, 1) (5 fs)° = KPa(t() 2

o Hubble radius crossing: ak—' = H~1
0 — Pk, t) ~ H?
Note: If NEC holds, then H < 0 — red spectrum, n; < 0
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Matter Bounce: Origin of Scale-Invariant

Spectrum

S o The initial vacuum spectrum is blue:

R. Branden-
berger

Introduction Pc(k) - k3’<(k)|2 ~ k2
S o The curvature fluctuations grow on super-Hubble
Perturbations scales in the contracting phase:

Basic
Applications

Challenges Vk(T]) = C 772 + C277_1 ’

o For modes which exit the Hubble radius in the matter
phase the resulting spectrum is scale-invariant:

Pc(k,n) ~ K3|vi(n)Pa2(n)

~ () ()2 g2

Conclusions
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Transfer of the Spectrum through the Bounce

Challenges

R. Branden-

berger @ In a nonsingular background the fluctuations can be

tracked through the bounce explicitly (both numerically

Sconarios in an exact manner and analytically using matching

Perturbations conditions at times when the equation of state

o changes).

o Explicit computations have been performed in the case
of quintom matter (Y. Cai et al, 2008), mirage
cosmology (R.B. et al, 2007), Horava-Lifshitz bounce
(X. Gao et al, 2009).

o Result: On length scales larger than the duration of the
conciisions bounce the spectrum of v goes through the bounce
unchanged.
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Conceptual Problems of Inflationary
Cosmology
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Introduction o Nature of the scalar field ¢ (the “inflaton")

Seenarios o Conditions to obtain inflation (initial conditions, slow-roll
eratons conditions, graceful exit and reheating)

o Amplitude problem

Applications
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o Applicability of General Relativity
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Origin of Inflation?
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Scenarios o To obtain inflationary dynamics free of initial condition
Perturbations fine tuning we require super-Planckian field values.

Basic

Applications

S o — requires embedding of inflation into a quantum
i gravitational theory.

o But: No-go theorems on obtaining de Sitter space in
string theory.
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Trans-Planckian Problem
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Challenges

Inflation

o Success of inflation: At early times scales are inside

e e the Hubble radius — causal generation mechanism is

- possible.

o Problem: If time period of inflation is more than 70H~",
then \p(t) < Iy at the beginning of inflation.

@ — new physics MUST enter into the calculation of the
fluctuations.
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Singularity Problem
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Scenarios

e o Standard cosmology: Penrose-Hawking theorems —
L initial singularity — incompleteness of the theory.

Applications

Challenges o Inflationary cosmology: In scalar field-driven
. inflationary models the initial singularity persists [Borde
and Vilenkin] — incompleteness of the theory.
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Cosmological Constant Problem
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phi phi
Challenges

Inflation

© Quantum vacuum energy does not gravitate.
@ Why should the almost constant V(y) gravitate?

String Theory
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Applicability of GR
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In all approaches to quantum gravity, the Einstein action

e is only the leading term in a low curvature expansion.
i:?;s‘ons o Correction terms may become dominant at much lower
energies than the Planck scale.

€l o Correction terms will dominate the dynamics at high

. curvatures.

S o The energy scale of inflation models is typically

String Theory n~1 0'%GeV.

som @ — 7 too close to my, to trust predictions made using

Conclusions G R
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Note: This is not a problem for Ekpyrotic Cosmology.
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Black Hole Formation in the Contracting Phase

Challenges

e Worry: Cosmological fluctuations become nonlinear on
berger sub-Hubble scales and form black holes.

Introduction
Scenarios Starting point: scalar cosmological perturbations in
Perturbations |0ng|’[udlna| gauge:

ds? = a(n)? {[1 +20(n, X)] dn? — [1 — 20(1, X)] 5;dxdxI } .

Equation of motion:

Conclusions
6(1+c?) 1
" S (D/ 2k2
K3 aw (g G T

12(CS2 — W) 1 .
(1+3wp (—"7)2) =0
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Black Hole Formation (ctd.)
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Resulting fractional density contrast:

Introduction

. (gi) 2
Scenarios 5p 2 k 3
0k = p(o) ——3< 2¢k+l¢ +3¢k> .

Criterium for direct black hole formation.

/ doM > M .
R<Rs

Result: for Bunch-Davies vacuum initial conditions early in
the contracting phase the first scale to form black holes is
the Hubble scale.

Perturbations
Basic
Applications

Challenges

Conclusions
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Black Hole Formation (ctd.)
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The condition that black holes form becomes

Introduction

Scenarios

Pe 12/5 IV’P] ! /
rturbat
. "L” SHonS ’H’ ~ CS W3/5 T MP]
Applications I Iini

Challenges

o For cs < 1 we have H < Mp,.

Bouncing
Cosmologies

Enargent. o For a radiation dominated phase at late stages of
S— contraction no black holes form from the direct channel
L ‘ if |Hmax| < Mpl-

ring Gas

Conclusions
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o Q: Attractor Nature of the Background

Scenarios

PTG o A: o.k. for Ekpyrotic contraction, not o.k. for matter
bounce.
Challenges o Q: What initial conditions for fluctuations?

o Usual answer: vacuum - but why?

o Note: For inflation the use of vacuum initial conditions
for fluctuations can be justified.
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Phenomenological Challenges
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nieduction o r ~ 1 at the end of the contracting phase.

Scenarios

o o fy ~ 1 at the end of the contracting phase (Y. Cai, W.
Xue, R.B. and X. Zhang, arXiv:0903.0631).
Challenges @ Need mechanism to boost the scalar spectrum during

the bounce phase.
@ This mechanism will generically boost f,.

— no go “theorem” in simple single field matter bounce
models.
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Scenarios o New matter which violates the Null Energy
Perturbations Cond|t|°n

o Challenges: Instabilities.
Challenges

o Modifications of Gravity.

Bouncing
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o Challenges: Instabilities.
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Some Examples

Challenges

R. Branden- Modified Matter

berger

P o Ghost condensate [C. Lin, L. Perreault Levasseur and
s R.B., arXiv:1007.2654 [hep-th]]

Seribatons o Galileon matter [A. ljjas and P. Steinhardt, 2016]
: Modified Gravity
@ Horava-Lifshitz gravity [R.B., arXiv:0904.2835 [hep-th]]

Quantum Resolution

allenges

@ Loop quantum cosmology [A. Ashtekar, M. Bojowald, A.
Conclusions Barrau, I AgUIIO]

o Perfect bounce [S. Gielen and N. Turok]
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Challenges for Emergent Cosmologies

Challenges

R. Branden-
berger

Introduction

Scenarios

Perturbations

s @ What is the dynamics which yields a quasi-static
C“;:al\‘;n‘ges phase'?
o Stability of the emergent phase?

nt
Cosmologies

String Theory

Conclusions
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hallenges
nflatior

@ Bouncing and Emergent Cosmologies from String

S Theory

Conclusions @ Bouncing Cosmologies from String Theory

o String Gas Cosmology: Emergent Cosmology from
String Theory
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Scenario 1: Temporal Duality

Challenges Starting point: Type Il superstring theory in the presence of
. Branden non-trivial gravito-magnetic fluxes (Euclidean background)

berger

Introduction Temperature dua“ty
Scenarios

Iierfurbanons Z( T) — Z( TE/T) .

T.: Self-dual temperature (equals the Hagedorn
temperature modulo coupling constants)

Challenges

Physical temperature
String Theory

Bounces

Conclusions Tp = T T << TC

T2
7?9 = '1%; 7- :§> 7::
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Introduction
Scenarios

Perturbations
Basic:

Applications

Challenges

String Theory

Bounces

Conclusions

S-Brane

o For T <« Tcand T > T, the dynamics of the low energy
modes of string theory is given by dilaton gravity

@ Begin in a contracting phase with T > T, and T
decreasing (i.e. T, increasing).

o When T = T, a set of string states becomes massless
(enhanced symmetry states)

o These states must be included in the action for the low
energy modes.

o S-Brane: term in the action presentonly at T = T¢

@ S-brane has p < 0and p = |p| > 0 — S-brane is matter
violating the NEC and can mediate a transition from
contraction to expansion.

o — S-Brane bounce.
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s = [dxv=alg - vievie] + [dxy=gmaTt

—K / drd3¢vhe?s(r).
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Evolution of Fluctuations through the Bounce

Challenges

R. Branden-
berger

T eRE o Consider initially scale-invariant cosmological

Scenarios fluctuations in the contracting phase on super-Hubble
Perturbations Sca|eS

o Matching conditions across the S-brane: continuity of
Al the induced metric and extrinsic curvature.

Infi

o Note: matching surface uniquely determined!
o Result: the spectrum of cosmological perturbations

String Theory g
Bounces after the bounce on super-Hubble scales is

scale-invariant.

Conclusions
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Scenario 2: AdS/CFT Cosmology

Challenges

R. Branden-
berger

Introduction
Scenarios @ Consider time dependent deformation of AdS via a
Perturbations time-dependent string coupling constant.

o Corresponding to a contracting universe for t < t, and
Challer . .
e an expanding universe for t > tp,.

o Curvature singularity at t = tp,.
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Scenario 2: AdS/CFT Cosmology

Challenges

R. Branden-
berger

Introduction

@ Consider time dependent deformation of AdS via a

et time-dependent string coupling constant.
o Corresponding to a contracting universe for t < #, and

Challenges an expanding universe for t > tp.
@ Curvature singularity at t = tp.
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Introduction

@ Consider time dependent deformation of AdS via a

et time-dependent string coupling constant.

o Corresponding to a contracting universe for t < #, and
Challenges an expanding universe for t > tp.

@ Curvature singularity at t = tp.

o Gravitational coupling weak for t < t; and t > t.

Scenarios

— o dual conformal field theory living on the boundary.

Conclusions
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Challenges

String Theory

Bounces

Conclusions

Scenario 2: AdS/CFT Cosmology

o Begin with a homogeneous and isotropic bulk solution:
contracting universe.

o Map the bulk onto the boundary via AdS/CFT at t = ¢;
o Evolve the system on the boundary for t; < t < f;.

o The conformal field theory can be continued to t > t,
without encountering a singularity (S. Das et al.).

@ Bulk cosmology can be reconstructed for t > 5, via
boundary-to-bulk propagators.

@ — successful singularity resolution.
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Scenario 2: AdS/CFT Cosmology

Challenges

R. Branden-

S Our work: include initial cosmological perturbations in the
Introduction bulk in the contracting phase.

Scenarios

Perturbations
Basic
Applications
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Scenario 2: AdS/CFT Cosmology

Challenges

R. Branden-

S Our work: include initial cosmological perturbations in the
Introduction bulk in the contracting phase.

Scenarios

. o Nonanalyticity in one of the two solutions of the
N fluctuation equations at t,

Applications

Challenges o — need to add a cutoff.

o Need to use matching conditions at the level of the CFT
(less ambiguities than when using matching conditions
in the bulk!).

o Result: Spectral index of the fluctuations
Copeleos unchanged across the bounce.

Bounces
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Principles of String Gas Cosmology

Challenges
R Idea: make use of. the new symmetries and new degrees of
freedom which string theory provides to construct a new
Introduction theory of the very early universe.
SR Assumption: Matter is a gas of fundamental strings
SN Assumption: Space is compact, e.g. a torus.

B;

Applications

hallenges
nflatior

String Theory
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String Gas
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Principles of String Gas Cosmology

Challenges
R. Branden- Idea: make use of the new symmetries and new degrees of

berger

freedom which string theory provides to construct a new
Introduction theory of the very early universe.
SR Assumption: Matter is a gas of fundamental strings
Bl Assumption: Space is compact, e.g. a torus.
Key points:

Challenges

@ New degrees of freedom: string oscillatory modes

o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

g Gae o New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R

Conclusions
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T-Duality

Challenges

R. Branden-
berger

T-Duality

Introduction

Scenarios © Momentum modes: E, = n/R
e o Winding modes: E, = mR
e o Duality: R — 1/R (n,m) — (m, n)
" @ Mass spectrum of string states unchanged
@ Symmetry of vertex operators
String Theory @ Symmetry at non-perturbative level — existence of
Siring Gas D-branes

Conclusions
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Adiabatic Considerations

Challenges

e Temperature-size relation in string gas cosmology

berger

Introduction

T-dual Phase

Challenges

T

~

Iy

String Theory

String Gas

InR
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Dynamics

Challenges

R. Branden-
berger

Assume some action gives us R(t)
T

Introduction

cenarios
Perturbations

Challenges

Hagedom

String Theory

String Gas X
1: Emergent Universe

onc 2: Bouncing Cosmology
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String Gas Bounce

Challenges

R. Branden-
berger

Introduction

Two possibilities:

Scenarios

Perturbations Qo Thermal BOUI’]CG
o Emergent Scenario

Challenges
"

In both cases, a long Hagedorn phase will allow
thermalization of the string gas on large scales.

String Theory
Bounce
String Gas

Conclusions
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Challenges
"

In both cases, a long Hagedorn phase will allow
thermalization of the string gas on large scales.

MEEBEEN . thermal initial conditions for fluctuations

Bounce
String Gas
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Doubled Space in SGC

Challenges

 Branden. Candidate for dynamics in the Hagedorn phase: Double
berger Field Theory [C. Hull and B. Zwiebach, 2009]

Idea: For each dimension of the underlying topological

space there are two position operators [R.B. and C. Vafa]:

Introduction

Scenarios

Feubaens o x: dual to the momentum modes
o X: dual to the winding modes

Applications

Challenges

String Theory
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String Gas
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Challenges

 Branden. Candidate for dynamics in the Hagedorn phase: Double
berger Field Theory [C. Hull and B. Zwiebach, 2009]

Idea: For each dimension of the underlying topological

space there are two position operators [R.B. and C. Vafa]:

Introduction

Scenarios
Pfrlurbat\ons Q0 X: dual to the momentum mOdeS
@ X: dual to the winding modes

nges
We measure physical length in terms of the light degrees
of freedom.

I(R) = R for R>1,

I(R) = lR for R< 1.

Conclusions
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Perturbations

Conclusions

Double Field Theory Approach

Idea Describe the low-energy degrees of freedom with an

action in doubled space in which the T-duality symmetry is

manifest.

+ o+

S — / dxdxe 2R,

1 1
§HMN3MHKL8NHKL — EHMNaMHKLaKHNL

AHMN o 0nd — OyONHMN — 4a1MN oy, dond
48MHMN(9Nd = %HMNHKLaMgA KaNé’B LHaB.
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Introduction

Scenarios

ij ik
Perturbations HMN — gljk' _g, bk[](./
S |bik@"  gjj — bikg" by
Challenges XM — ()?I Xi)
o ) )
T s 0
String Theory L J

String Gas

Conclusions
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Singularity Resolution in SGC

Challenges

. Branden- o Consider test particles in a DFT background.

berger

o o Derive geodesic equation of motion
Scenarios o Consider a cosmological background with b = 0 and
Perturbations f|Xed d||at0n

Basic
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Singularity Resolution in SGC

Challenges

. Branden- o Consider test particles in a DFT background.

berger

o o Derive geodesic equation of motion

Scenarios o Consider a cosmological background with b = 0 and
Perturbations f|Xed d||at0n

o Find that the geodesics can be extended to infinite
S proper time in both time directions.

@ — geodesic completeness in terms of physical time:

String Theory
Bounce

String Gas tp(t) = t for t>> 1 s

Conclusions

1
(t) = n for t< 1.
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Emergent Dynamics

Challenges

R. Branden-
berger

We will thus consider the following background dynamics for
the scale factor a(t):

Introduction

Scenarios

Perturbations
Applicatior

Challenges

String Theory

String Gas

t —
Conclusions p=0 R p=tho/3
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Dimensionality of Space in SGC

Challenges

R. Branden- o Begin with all 9 spatial dimensions small, initial

berger

temperature close to Ty — winding modes about all
Introduction spatial sections are excited.
Scenarios q 3 q . .
e o Expansion of any one spatial dimension requires the
erturbations . . . . . R a
Bas annihilation of the winding modes in that dimension.
Challenges ! ) v
e, - O
String Theory : . . . . .
o Decay only possible in three large spatial dimensions.
String Gas
Conclusions @ — dynamical explanation of why there are exactly three

large spatial dimensions.
(see also numerical work by M. Sakellariadou)
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Moduli Stabilization in SGC

Challenges Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

R. Branden-

berger @ winding modes prevent expansion
@ momentum modes prevent contraction
0 — Ve(R) has a minimum at a finite value of

Introduction

Scenarios

Perturbations R; — Hmin
@ in heterotic string theory there are enhanced symmetry
Challenges states containing both momentum and winding which

are massless at Ry,
o — Veff(Rmin) =0
@ — size moduli stabilized in Einstein gravity background
Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

@ enhanced symmetry states
@ — harmonic oscillator potential for 6
@ — shape moduli stabilized

Conclusions
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Dilaton stabilization in SGC

Challenges

R. Branden-
berger

S @ The only remaining modulus is the dilaton.
ntroduction

Scenarios @ Make use of gaugino condensation to give the dilaton a
Perturbations potential with a unique minimum.

Basic

o — diltaton is stabilized.

e o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].

Conclusions
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S @ The only remaining modulus is the dilaton.
ntroduction

Scenarios @ Make use of gaugino condensation to give the dilaton a
Perturbations potential with a unique minimum.

o — diltaton is stabilized.
Challenges

: o Dilaton stabilization is consistent with size stabilization
[R. Danos, A. Frey and R.B., 2008].

o Gaugino condensation induces (high scale)
supersymmetry breaking [S. Mishra, W. Xue, R.B. and
U. Yajnik, 2012].

Conclusions
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Scenarios

Challenges

String Theory

String Gas

Conc

Structure formation in string gas cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.



Structure Formation in String Gas Cosmology

Challenges

R. Branden-
berger

Introduction

Scenarios o Calculate matter correlation functions in the Hagedorn
Perturbations phase (neglecting the metric fluctuations)

o For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = fj(k)

o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations

Applications

Challenges

String Theory
Bounce
String Gas

Conclusions
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Extracting the Metric Fluctuations

Challenges

R. Branden-

S Ansatz for the metric including cosmological perturbations
Introduction and gravitational waves:

Scenarios

Perturbations

ds? = 22(n)((1 +2)dn? — [(1 — 20)5; + hyldx'dx’) .
Inserting into the perturbed Einstein equations yields

([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))

Conclusions <|h(k)|2> = 167TZGZK_4<6TI/(k)6TI](k)> .
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Power Spectrum of Cosmological Perturbations

Challenges

R. Branden-
berger

Key ingredient: For thermal fluctuations:

Introduction

Scenarios

riurpations T2
e (00) = gCv-
allenges Key ingredient: For string thermodynamics in a compact
. space
R?/63
VI

Conclusions
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Power spectrum of cosmological fluctuations

Po (k)

8G?k~ 1 < |op(k)|? >
8G?k? < (6M)? >
8G?k~* < (6p)? >R

T 1
ol 1
Sl
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Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G*k* < (6p)? >R

T 1
_ 2 1
- &G B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Running of the Spectrum

Challenges

R. Branden-
berger

Introduction Using a simple parametrization of the transition between the
Scenarios Hagedorn phase and the radiation phase we find:

Perturbations
Basic

Applications Qg ~ ——(1 — [73)‘
Challenges

This is same sign but parametrically larger in amplitude than
the running in simple inflationary models:

String Theory
Bounce Qg ~ _(n3_1)2

String Gas

Conclusions
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Spectrum of Gravitational Waves

Challenges

R. Branden-
berger

1672 G2k~ < | Tj(k)[? >
Introduction —
Scenarios = 167T2 sz ¢ < |T/](R)|2 >

Perturbations

2

167r262€13(1 —T/TH)
S

Applications

Challenges
i

Key ingredient for string thermodynamics

T
< \T,-,-(R)|2 > W“ —T/Th)
&
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Spectrum of Gravitational Waves

Challenges

R. Branden-
berger

1672 G2k~ < | Tj(k)[? >
= 167°G*k~* < |T{(R)? >

Introduction

Scenarios

P‘erfurbanons 1671'2 GZEIS(‘I _ T/ TH)
S

2

allenges

Key ingredient for string thermodynamics

T
< \T,-,-(R)|2 > W“ —T/Th)
&

Key features:

Conclusions

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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BICEP-2 Results

Challenges ;

R. Branden- | e B2xB2 |
berger 0.05 x  B2xBlc

B2xKeck (preliminary)
0.04

I(+1)CP®/2m [uk’]

String Gas

-0.01 ! ! ! ! !
0 50 100 150 200 250 300

Multipole
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Requirements

Challenges

R. Branden-
berger

Introduction

Scenarios

- o Emergent phase in thermal equilibrium
Fotaion o Cy(R) ~ R? obtained from a thermal gas of strings

hal\;ng‘es provided there are winding modes which dominate.

e o Cosmological fluctuations in the IR are described by
Einstein gravity.
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Conclusions

Challenges

R. Branden-
berger

o Alternatives to cosmological inflation exist.

oo o Two classes of alternatives are bouncing and emergent
Perturbations cosmologies.

o Generically, a large value of r results if the primordial
hallenges fluctuations are in the adiabatic mode —: a detection of

r # 0 is not a “smoking gun” signal of inflation.

osmacge o Simple bouncing cosmologies described using
String Theory effective field theory suffer from an anisotropy

problem except for models with an Ekpyrotic phase of
Conelusions contraction.

Introduction
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Introduction
Scenarios
Perturbations
Basic

Applications

Challenges
Inf

Conclusions

Conclusions Il

Qo

Qo

Superstring cosmology — need to look beyond point
particle effective field theory and beyond inflation.

String Gas Cosmology: Model of cosmology of the very
early universe based on new degrees of freedom and
new symmetries of superstring theory.

Thermal string fluctuations lead to an almost
scale-invariant spectrum of cosmological fluctuations
with small red tilt and a negative running.

o Key prediction: blue tilt of the tensor modes.
@ String Theory testable through cosmological

observations.
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