
Ki-Young Choi, Paris, COSMO2017

Particle Candidates for
Dark Matter

 1st September, COSMO2017

1

Ki -Young Choi

COSMO	17
GENERAL	PROGRAMME

09:00	-	09:40 Particle	candidates	of	dark	matter Ki	Young	Choi	(Chonnam	National	University,	Korea)

09:40	-	10:20 Indirect	detection	of	dark	matter:	Status	and	
outlook

Christoph	Weniger	(GRAPPA,	Institute	of	Physics,	
University	of	Amsterdam,	The	Netherlands)

10:20	-	11:00 Primordial	black	holes	and	gravitational	
waves

Misao	Sasaki	(Yukawa	Institute	for	Theoretical	
Physics,	Kyoto	Univ.,	Japan)

11:00	-	11:30 Coffee	Break
11:30	-	12:10 Searches	for	Dark	Matter	at	LHC Andreas	Petridis	(University	of	Adelaide,	Australia)
12:10	-	12:50 Neutrino	properties Thomas	Schwetz	(KIT,	Germany)
12:50	-	13:30 DarkSide Cristiano	Galbiatti	(Princeton	University,	USA)
13:30	-	14:00 Tribute	to	Pierre	Binetruy David	Langlois	(APC,	France)

14:00	-	14:30 Summary Leszek	Roszkowski	(University	of	Sheffield,	UK	and	
National	Centre	for	Nuclear	Research,	Poland)

14:30 END	OF	THE	CONFERENCE

Friday	September	1st
Dark	Matter,	Particle	Physics



Ki-Young Choi, Paris, COSMO2017

 How is the DM generated?  How cold? 

Thermal production

Non-thermal production 

Freeze-out (WIMP) 

Already decoupled 
(EWIMP)
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Evidences for dark matter 

In	1933,	F.	Zwicky	first	discovered	Dark	Matter	in	the	velocity	
dispersion	of	galaxies	in	the	COMA	cluster.

The	discrepancies	between	visible	matter	and	gravitational	matter	
in	different	scales.

-	Galactic	scales	:	rotation	curves	of	galaxies

-	Galaxy	cluster	scales	:	distribution	of	velocities,	gravitational	
lensing,	profile	of	X-ray	emission,	Bullet	cluster	

-	Cosmological	scales	:	acoustic	peaks	of	CMB,	large	scale	
structure	formation

All	of	these	observations	can	be	explained	by	a	single	
component	of	dark	matter.
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2. be neutral : NO electromagnetic interaction 

  Only upper bounds on the self interaction

3. 27% of the present energy density of the universe

      be stable or lifetime longer than the age of universe

4. cold (or warm) : non-relativistic to seed the structure formation

1. have existed from early Universe up to now
and located around galaxies, clusters

No lower bound down to gravity!
from cluster collisions

In fact all the evidences are gravitational.

Dark Matter as a particle must 

11
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First, the presence of the mediator propagator has to be taken into account in predictions
for the DM production signal, as it can a↵ect the kinematical characteristics of the events
compared to the contact interaction limit. Second, the production of the mediator particle
may also result in final states other than a DM particle pair, and these visible decay modes
can be used to constrain such models. Third, it can alter the interplay between cosmological
and collider constraints. See Refs. [158, 159] and references therein for related discussion.

2.4 Dark Matter Self-interactions

A new strategy for DM searches consists of looking for e↵ects associated with possible non-
gravitational DM self-interactions in the sky. The cosmological concordance model (⇤CDM)
presents DM as a cold, collisionless fluid. However, evidence has been accumulating since
the 1990’s, suggesting that gravitational N-body simulations performed with cold DM only,
while extremely successful at large scales, do not correctly reproduce the observed structure
at the galactic and sub-galactic scales. Two long-standing puzzles of the collisionless cold
DM paradigm are the ‘cusp vs. core’ [160–165] and the ‘too-big-to-fail’ [166, 167] problems.
These issues are collectively referred to as small scale structure problems of the ⇤CDMmodel;
for a recent review, see Ref. [10].

While it has been proposed that the above tensions could be addressed by carefully
accounting for the e↵ects of baryonic physics [168–173], alternative solutions are o↵ered by
warm [174, 175], decaying [176] or self-interacting DM [10]. Thus, the small scale structure of
the Universe can be seen as a probe for the properties of DM, which can potentially distinguish
between the standard picture of cold collisionless and collisional DM. It is noteworthy that
this is independent of how strongly DM interacts with the SM particles and can, in principle,
allow to e�ciently probe DM even if the other probes such as collider or direct detection
experiments fail to identify properties of DM.

These tensions can be alleviated if at the scale of dwarf galaxies DM exhibits a large
self-scattering cross section, �, over DM particle mass, m, in the range 0.1 . �/m .
10 cm2/g [177–186]. Nevertheless, the non-observation of an o↵set between the mass dis-
tribution of DM and galaxies in the Bullet Cluster constrains such self-interacting cross
section, concretely �/m < 1.25 cm2/g at 68% CL [187–189], i.e. around 1012 pb for a DM
of 1 GeV mass. Similarly, recent observations of cluster collisions lead to the constraint
�/m < 0.47 cm2/g at 95% CL [190]. However, some of the methods and assumptions uti-
lized to obtain these results have been questioned in the recent literature [191–194] and the
actual limit could be less stringent.

Finally, observations of the galaxy cluster Abell 3827 suggest an o↵set between the
stars and the DM halo in at least one of the four central galaxies. If interpreted solely
as an e↵ect of DM self-interaction, it was argued to imply a non-vanishing �/m of the
order of 10�4 cm2/g [195]. However, these results have been reinterpreted using an improved
kinematical analysis, obtaining �/m ⇠ 1.5 cm2/g in the case of contact interactions [196, 197].
The DM substructure observed in Abell 520 [198, 199], coincident with the hot gas and not
hosting any stars, has been interpreted as suggestive of self-interacting DM in Refs. [200, 201].

The self-scattering of DM particles leads to heat transfer that decreases the density con-
trast in the centers of DM halos turning cusps into cores and changing the subhalo abundance
matching due to a lower halo concentration. Self-interacting DM therefore directly addresses
the two small-scale problems. Although this e↵ect alone cannot e�ciently reduce the forma-
tion rate of luminous galaxies in DM subhalos, it may still alleviate the ‘missing satellites’
problem [202, 203] with the help of additional DM physics (e.g. warm or decaying DM) or
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Figure 2: (a) Temperature anisotropy of the CMB after the first results released by the Planck Collab-

oration [28]. (b) Total mass-energy distribution in the Universe. Taken from Ref. [29].

in the distribution of its temperature correspond to fluctuations of the matter density in

the early Universe that subsequently gave rise to the observed large structures. The power

spectrum of temperature anisotropies (see Fig. 2(a)) when expanded in terms of spherical

harmonics depends on cosmological parameters can then be obtained by fitting the resulting

spectrum, with some underlying assumption of cosmological model, e.g., the ⇤CDM model.

The current values [27] of the relic abundance, that is the ratio of the density to the

critical density, of baryonic matter ⌦b, and the corresponding quantity for the non-baryonic

DM component, ⌦
DM

that were obtained by WMAP and more recently by PLANCK by

fitting the six-parameter ⇤CDM model are:

⌦b h
2 = 0.02226(23), (1.1)

⌦
DM

h2 = 0.1186(20), (1.2)

where h = H
0

/100 kmMpc s = 0.678(9) [27] is the reduced Hubble constant, with H
0

denoting the Hubble constant today.

The remaining dominant contribution, ⌦
⇤

⇡ 0.692, accounts for the so-called dark

energy (for a recent review see, e.g., [30, 31]. A schematic cartoon showing di↵erent con-

tributions to the mass-energy content of the Universe is shown in Fig. 2(b).

Further information about the amount of matter and dark energy components of the

Universe can be derived from analyses of baryon acoustic oscillations (BAO, periodic fluc-

tuations in the density of baryonic matter that originated from the opposite e↵ects of

gravitational attraction and radiation pressure), supernovae type Ia, or from the Lyman-↵

forests (neutral hydrogen clouds seen in absorption in quasar spectra). In the case of ellip-

tical galaxies and galaxy clusters another important piece of evidence for the existence of

DM comes from the X-ray emission from hot gas (for further discussion see, e.g., [4]).
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Dark matter candidate in the Standard Model?

Relic density from thermal freeze-out

[Komatsu et al., 2011]

The large free streaming scale disturb the clustering of galaxies 

30

A. Types of dark matter

1. Hot Dark Matter

If the dark matter particle is collisionless, then they
can damp the fluctuations from higher to lower density
regions above the free-streaming scale. This hot dark
matter consists of particles which are relativistic at the
time of structure formation and therefore lead to large
damping scales (Bond and Szalay, 1983).
The SM neutrinos are the simplest examples of hot

dark matter. In the early universe they can be decoupled
from a relativistic bath at T ∼ 1 MeV, leading to a relic
abundance today that depends on the sum of the flavor
masses:

Ωνh
2 =

∑
i mνi

90 eV
. (188)

Various observational constraints combining Ly-α for-
est, CMB, SuperNovae and Galaxy Clusters data leads
to (Fogli et al., 2008; Seljak et al., 2006):

∑
mν <

0.17 eV (95 % CL). Similar limits can be applied to
any generic hot dark matter candidate, such as ax-
ions (Hannestad et al., 2010) or to hot sterile neutri-
nos (Dodelson et al., 2006; Kusenko, 2009). The free-
streaming length for neutrinos is (Kolb and Turner,
1988):

λFS ∼ 20

(
30 eV

mν

)
Mpc. (189)

For instance, the universe dominated by the eV neutri-
nos would lead to suppressed structures at 600 Mpc scale,
roughly the size of supercluster. Furthermore, hot dark
matter would predict a top-down hierarchy in the forma-
tion of structures, with small structures forming by frag-
mentation of larger ones, while observations show that
larger galaxies have formed from the mergers of the ini-
tially small galaxies.

2. Cold Dark Matter

The standard theory of structure formation requires
cold dark matter (CDM), whose free-streaming length is
such that only fluctuations roughly below the Earth mass
scale are suppressed (Bertschinger, 2006; Green et al.,
2004, 2005; Hofmann et al., 2001; Loeb and Zaldarriaga,
2005). The CDM candidates are heavy and non-
relativistic at the time of their freeze-out from thermal
plasma. The current paradigm of ΛCDM is falsifiable
whose predictive power can be used to probe the struc-
tures at various cosmological scales, such as the abun-
dance of clusters at z ≤ 1 and the galaxy-galaxy corre-
lation functions have proven it a successful and widely
accepted cosmological model of large scale structure for-
mation.
The N-body simulations based on ΛCDM provide a

strong hint of a universal dark matter profile, with the

same shape for all masses, and initial power spectrum.
The halo density can be parametrized by:

ρ(r) =
ρ0

(r/Rs)γ [1 + (r/Rs)α]
(β−γ)/α

, (190)

where ρ0 and the radius Rs vary from halo to halo. the
parameters α, β and γ vary slightly from one profile to
other. The four most popular ones are:

• Navarro, Frenk and White (NFW) pro-
file (Navarro et al., 1997), where α = 1, β =
3, γ = 1, and Rs = 20 Kpc.

• Moore profile (Moore et al., 1999), where α =
1.5, β = 3, γ = 1.5, and Rs = 28 Kpc.

• Kra profile (Kravtsov et al., 1998), where α =
2, β = 3, γ = 0.4, and Rs = 10 Kpc.

• Modified Isothermal profile (Bergstrom et al.,
1998), where α = 2, β = 3, γ = 0, and Rs =
3.5 Kpc.

Amongst all the four profiles, the scales where devia-
tions are most pronounced (the inner few kiloparsecs) are
also the most compromised by numerical uncertainties.
The power-law index value, γ, in the inner most regions is
part of the numerical uncertainties and still under debate,
as all four simulations provide different numbers. The
simulations hint towards a cuspy profile, as the density in
the inner regions becomes large, while from the rotation
curves of low surface brightness (LSB) galaxies point to-
wards uniform dark matter density profile with constant
density cores (Gentile et al., 2004). In our own galaxy
the situation is even more murky, as the observations
of the velocity dispersion of stars near the core suggests
a supermassive black hole at the center of our Galaxy,
with a mass MSMBH ≈ 2.6×106M⊙ (Ghez et al., 1998).
Many galaxies have been found to host supermassive
blackholes of 106 − 108M⊙. It has been argued that
if supermassive blackhole exists at the galactic center,
the accretion of dark matter by the blackhole would
enhance the dark matter density (Peebles, 1994). To
alleviate some of these problems, dark matter with a
strong elastic scattering cross section (Dave et al., 2001;
Spergel and Steinhardt, 2000), or large annihilation cross
sections (Kaplinghat et al., 2000) have been proposed.
There are further discrepancies between observations

and numerical simulations. The number of satellite ha-
los as predicted by simulations exceeds the number of
observed Dwarf galaxies in a typical galaxy like Milky-
Way (Klypin et al., 1999; Moore et al., 1999). However
recent hydrodynamical simulations with ΛCDM, includ-
ing the supernovae induced outflows suggest a fall in the
dark-matter density to less than half of what it would
otherwise be within the central Kpc.

Non luminous baryons if formed before BBN and 
would not violate the ordinary baryon abundance

It is too small!

It is too hot! 

τX ∼ 1 sec−1012 sec (1)

Ωãh
2 =

mã

mX
ΩXh2 (2)

U(1)Y SU(2)L G̃ ã fa ∼ 1010 GeV (3)

xf ∼ 20− 25 (4)

τa ∼ 64π

g2aγγm3
a
≃ 1040

(
fa

1010GeV

)5

sec (5)

∑
mν < 1.3 eV (95%CL) (6)

ρc = 3H2
0M

2
P = 1.88× 10−29g cm−3 ΩDM =

ρDM

ρc
∼ 0.22 (7)

τDM > τage ∼ 1018 sec τDM > 1026 sec Z2 e+, p̄, γ, . . . (8)

SU(3)C × SU(2)L × U(1)Y (9)

(T ≫ m) (T ≪ m) n ∝ a−3 (10)

φ χ (11)

ζ = α
δΓ

Γ
(12)

Pζ = (1− r)2Pinf + r2Pχ (13)

Ωh2
WIMP =≃ ⟨σann⟩ ≃ 10−10 GeV−2 ≃ 10−38 cm2 (14)

Ωh2 = mn ≃ 0.28

(
Y

10−11

)( m

100 GeV

)
(15)

dn

dt
+ 3Hn = −n2⟨σannv⟩ Y ≃ H

s⟨σannv⟩
(16)
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1 Introduction

I am honored to be invited at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”. It is not necessary to repeat about the evidences of dark matter, and during
the conference there are many presentations and discussions on the dark matter candidates and
properties.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

Y ⇠ 10�22 < 0.015 (1)

�⇢

⇢
=

4

3

�n

n
(2)

A Appendix...

References
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Figure 2: (a) Temperature anisotropy of the CMB after the first results released by the Planck Collab-

oration [28]. (b) Total mass-energy distribution in the Universe. Taken from Ref. [29].

in the distribution of its temperature correspond to fluctuations of the matter density in

the early Universe that subsequently gave rise to the observed large structures. The power

spectrum of temperature anisotropies (see Fig. 2(a)) when expanded in terms of spherical

harmonics depends on cosmological parameters can then be obtained by fitting the resulting

spectrum, with some underlying assumption of cosmological model, e.g., the ⇤CDM model.

The current values [27] of the relic abundance, that is the ratio of the density to the

critical density, of baryonic matter ⌦b, and the corresponding quantity for the non-baryonic

DM component, ⌦
DM

that were obtained by WMAP and more recently by PLANCK by

fitting the six-parameter ⇤CDM model are:

⌦b h
2 = 0.02226(23), (1.1)

⌦
DM

h2 = 0.1186(20), (1.2)

where h = H
0

/100 kmMpc s = 0.678(9) [27] is the reduced Hubble constant, with H
0

denoting the Hubble constant today.

The remaining dominant contribution, ⌦
⇤

⇡ 0.692, accounts for the so-called dark

energy (for a recent review see, e.g., [30, 31]. A schematic cartoon showing di↵erent con-

tributions to the mass-energy content of the Universe is shown in Fig. 2(b).

Further information about the amount of matter and dark energy components of the

Universe can be derived from analyses of baryon acoustic oscillations (BAO, periodic fluc-

tuations in the density of baryonic matter that originated from the opposite e↵ects of

gravitational attraction and radiation pressure), supernovae type Ia, or from the Lyman-↵

forests (neutral hydrogen clouds seen in absorption in quasar spectra). In the case of ellip-

tical galaxies and galaxy clusters another important piece of evidence for the existence of

DM comes from the X-ray emission from hot gas (for further discussion see, e.g., [4]).
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[Carr et al 2016]Primordial	Black	Holes	as	Dark	Matter	

1 Introduction

Thank you for inviting me at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

There are discrepancies between visible matter and gravitational matter in di↵erent scales,
at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.

Lyman ↵ flux-power spectrum

⌦⌫h
2 =

P
i m⌫i

93.14 eV
(1)

1030 (2)

h�vi ⇠ T 6

M8

Y / T 7

R
(3)

h�vi ⇠ T 2 Y / T 3

R (4)

h�vi = �
0

Y / TR (5)

h�vi ⇠ 1

T 2

Y / 1

m
(6)

⌦h2 ' 0.1
⇣ y

10�11

⌘
2

(7)
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 Candidates of dark matter

Strong CP problem : axion 

Supersymmetry : neutralino, gravitino, axino, scalar neutrino

Neutrino sector : sterile neutrino, RH neutrino, Majoron

Technicolor : Techni-baryon, Techni-dilaton

Extra dimension : Kaluza-Klein particle

and WIMPzillas, primordial Black-Hole, dilaton

beyond Standard Model

and more ....

6

Fuzzy CDM, minimal DM, Maverick DM, Asymmetric DM, 
Hidden sector DM, SIDM, Mirror DM, Composite DM, Fermionc 
DM, 
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related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.

ΩWDMh2 ≃
( m

1 keV

)

(

106.75

g∗

)

1040 (1)

m ! 10 keV 10−6 eV 10−19 eV 1 keV 100GeV eV ∼ 100GeV 1013GeV
(2)

Y ∼ 10−20 Y ≃ ηB ≃ 10−9 (3)

2

Interaction 
to visible 
matter

DM Mass

4 H. Baer et al. / Physics Reports 555 (2015) 1–60

Fig. 1. Several well-motivated candidates of DM are shown in the log–log plane of DM relic mass and �int representing the typical strength of interactions
with ordinary matter. The red, pink and blue colors represent HDM, WDM and CDM, respectively. This plot is an update of the previous figures [13,17].
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of candidate. For reference, a SM neutrino with mass of order 0.1 eV and weak interaction strength of order 10�36 cm2 =
1 pb ' 1 GeV�2/3.92 is shown, although such a candidate would constitute hot DM (HDM) and thus does not meet the
need (of its velocity not exceeding the escape velocity in galaxies) for cold relics. For more details see Section 4.1.

The box marked ‘‘WIMP’’ represents ‘‘generic’’ weakly interacting massive particle candidates as thermal relics. Their
mass can lie in the range between a few GeV [15] (below which it would overclose the Universe) and some ⇠100 TeV from
unitarity constraints [18,19]. Their detection cross section is limited from above by direct DM search limits. Recently, the
strongest of these come from the Xenon100 [20] experiment and the LUX [21] experiment. A firm lower limit on the other
hand does not really exist; it can only be estimated on the basis of some kind of theoretical arguments of ‘‘naturalness’’. A
more detailed discussion of thermal WIMPs will be presented in Section 4.2.

The most highly scrutinized thermal relic is the lightest neutralino particle of supersymmetric (SUSY) theories [22,23],
hereafter referred to as simply the neutralino.5 The neutralino is particularly well-motivated since, in addition to solving
the DM problem, SUSY extensions of the SM contain a number of other attractive features both on the particle physics side
and in early Universe cosmology. From below, the neutralinomass is limited by LEP2 searches to lie above⇠50 GeV in GUT-
based SUSY models, but could be significantly lighter in more general SUSY models [27]. As an upper bound, the neutralino
mass is not expected to significantly exceed the⇠1 TeV scale based on the theoretical expectation of ‘‘naturalness’’. We will
discuss this important candidate in more detail below and in Section 4.2.

Another type of dark matter relic is called asymmetric dark matter (ADM). In this case, in contrast to the standardWIMP
scenario, one postulates both DM and anti-DM particles where an asymmetry can develop between the two, in analogy
to baryonic matter. The ADM possibility has recently received renewed interest and will be discussed in more detail in
Section 4.4.

An alternative possibility consists of strongly interacting massive particles (SIMPs). Candidate SIMP particles with mass
values around the MeV scale have been suggested as a DM possibility in Ref. [28]. While usually DM is not expected to
interact strongly, such candidates have been considered in the past (and for the most part been excluded [29] for instance
by searches for anomalous heavy nuclei or even by collider searches).

Moving down the vertical axis, the axion is a well known example of a non-thermal relic. Its interaction strength is
strongly suppressed relative to the weak strength by a factor (mW/fa)2, where fa ⇠ 1011 GeV is the PQ breaking scale.
Despite being of very light mass (⇠10�5 eV), the axion is nonetheless a CDM candidate since it is produced basically at rest
in the early Universe. The axion is a highly motivated and interesting candidate for CDM. It will be discussed in more detail
below and in Section 3.3.

In SUSY axion models, the axion supermultiplet contains, along with the axion, the spin- 12R-parity odd axino field ã and
the R-parity even spin-0 saxion field s. The axino, as the fermionic partner of the axion, is an example of an extremely–weakly

5 For reviews see, e.g., [24–26].

Fuzzy
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1 Introduction

Thank you for inviting me at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

There are discrepancies between visible matter and gravitational matter in di↵erent scales,
at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.
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The present Universe is dominated by unknown dark component and a baryonic
matter with small portion of photons and neutrinos. 13.7 billion years ago, at
the age of Universe around 380,000 years old, dark matter comprise of 63 %
of the Universe with the other components. At this time the photons decou-
pled became the cosmic microwave background radiation. Before this time the
baryons were tightly coupled to the photons, the structure of baryons could
not grow until they decoupled from the photons. To make present large scale
structures the dark matter which does not interact with photons must exist and
started the structure formation much earlier than the baryons.

The dark matter was first discovered by F. Zwicky in 1933 in the rotational
curve of COMA cluster and now we have more evidences in the cosmological
scales and also in the galaxy scales.

≃ 0.1 Y ≃ 1 ⟨E⟩ ≃ 1 eV ⟨E⟩ ≃ m = 100 GeV Y ≃ 10−11 (1)

√
s ≫ mG ψµ = Ψµ − 1√

6
γµψ + i

√

2

3

∂µψ

mG

(2)

⟨v⟩ < 0.01 km/ sec (95%CL) l ≃ 1000 (3)

Ωh2 =
( mG

1 keV

)

(

100

g∗

)

(4)

Y =
n

s

∣

∣

∣

f
=

3
4
ζ(3)
π2 gT 3

2π2

45 g∗T 3
=

135ζ(3)

8π4

g

g∗
(5)

Y0 ≃ ⟨σv⟩MpTR ΓG ≃ 1

32π2

m3
G

M2
p
≃ 107 sec

( mG

1 TeV

)3

(6)

dY

dT
≃ ⟨σv⟩Mp ⟨σv⟩ ≃ 1

M2
p

(

Mg

mG

)2

(7)

sR3 = constant t ≃ Mp

T 2
(8)
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axion

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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10MeV m ∼ 1013GeV 1MeV (3)
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sterile	
neutrino

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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neutralino

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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gravitino,	axino

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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m ! 10 keV 10−6 eV 10−19 eV 1 keV 100GeV eV ∼ 100GeV
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10MeV m ∼ 1013GeV 1MeV (3)
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The present Universe is dominated by unknown dark component and a baryonic
matter with small portion of photons and neutrinos. 13.7 billion years ago, at
the age of Universe around 380,000 years old, dark matter comprise of 63 %
of the Universe with the other components. At this time the photons decou-
pled became the cosmic microwave background radiation. Before this time the
baryons were tightly coupled to the photons, the structure of baryons could
not grow until they decoupled from the photons. To make present large scale
structures the dark matter which does not interact with photons must exist and
started the structure formation much earlier than the baryons.

The dark matter was first discovered by F. Zwicky in 1933 in the rotational
curve of COMA cluster and now we have more evidences in the cosmological
scales and also in the galaxy scales.
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mass

WIMPzillas

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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1 Introduction
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The K0
L ! ⇡0⇡0� is one of the rare decay modes of neutral kaon. The 2 pions decay and

produce 4 gamma-rays and therefore K0
L ! ⇡0⇡0� geenrates finally 5 gamma-rays. This decay

is predicted in the Chiral Perturbation Theory (ChPT), which is the low energy e↵ective theory
of the strong interaction at 6-th order. Kaons at the Tevatron (KTeV) experiment is known
as neutral kaon experiment group and service to measure upper limit about branching ratio
for K0

L ! ⇡0⇡0� decay with 2.43 ⇥ 10�7 (90% Confidence Level). This thesis discussed the
measurement of misunderstanding in CsI electromagnetic calorimeter about K0

L ! ⇡0⇡0⇡0 and
K0

L ! ⇡0⇡0 that mistake for K0
L ! ⇡0⇡0�. The K0

L ! ⇡0⇡0⇡0 decay is the main background
for K0

L ! ⇡0⇡0� Because K0
L ! ⇡0⇡0⇡0 decay generate 6 gamma rays. One background is

from this decay. 1 gamma ray passing through beam hole or 2 gamma rays can fuse detect
in CsI electromagnetic calorimeter. Another background is K0

L ! ⇡0⇡0 decay. Because 1
pion(⇡0) process to ⇡0 ! e+e�� by Dalitz decay and the other pion process to ⇡0 ! �� decay.
Then those electrons are di�cult to distinguish from gamma ray detect CsI electromagnetic
calorimeter. Hence K0

L ! ⇡0⇡0� decay can be mistaken. This thesis compared experiment
results and monte carlo (MC) simulation results. The di↵erents of experiment results and MC
results of misunderstanding for the K0

L ! ⇡0⇡0� decay in the CsI electromagnetic calorimeter
are about 0.89% and 0.026% to K0

L ! ⇡0⇡0⇡0 and K0
L ! ⇡0⇡0 decay mode.
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1 Introduction

Thank you for inviting me at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
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Fig. 8. Relative yield for thermal production of HDM, WDM, CDM WIMPs and ADM, as well as E-WIMPs. In case (I) E-WIMPs are thermally created in
scatterings involving heavier particles in thermal equilibrium starting from x�1

reh = mX/Treh, while in case (II) in decays of heavier particles in thermal
equilibrium. In the case of WIMPs a small difference between Tfr and Tdec is also marked; see text.

4.1. Hot relics

In this case DM relic particles were in thermal equilibrium during an early epoch, and then decoupled at a temperature
Tdec which is larger than their massmX ; see Fig. 8. Since they were still relativistic when they were produced, they are called
‘‘hot relics’’. The energy spectrum froze out when they decoupled so that the distribution is the same as when they were in
the thermal equilibrium; the number density is only redshifted after freeze-out. In this case, the comoving abundance only
depends on the effective degrees of freedom of entropy g⇤S at the time of decoupling. Using Eqs. (13) and (14), one obtains

YX = nX

s

���
Tdec

= 45⇣ (3)
2⇡4

geff
g⇤S(Tdec)

, (27)

where ⇣ (3) ' 1.202 and geff = g (boson) and geff = 3g/4 (fermion), with g denoting the degrees of freedom of the field X .
A well-known example of hot relics are light active (SM) neutrinos which decouple at Tdec ' 1 MeV when g⇤S = 10.75.

Their relic density at present is given by

⌦⌫h2 =
P

m⌫

91.5 eV
, (28)

assuming that they are now almost non-relativistic (i.e. the bulk of their energy density is tied up in their rest mass but their
velocity distribution still typically exceeds their escape velocity so that they are not gravitationally bound).

4.2. Cold relics: case of WIMPs

When Tdec < mX , WIMPs decouple when their typical velocities are still semi-relativistic, v ' c/3. The relic abundance
and freeze-out temperature can be calculated from the Boltzmann equation,

dnX

dt
+ 3HnX = gX

Z
C[fX ]

d3p
(2⇡)3

, (29)

where nX and gX are respectively the number density and spin degrees of freedom of X while C[f ] is the collision operator.
In a homogeneous and isotropic Universe, nX is defined from the phase space density fX by

nX = gX
Z

d3p
(2⇡)3

fX (E, t). (30)

For definiteness – in the process of self-annihilation with the type X + X ! 3 + 4 where we assume that the species 3 and
4 are in the thermal equilibrium – the Boltzmann equation can be written as

dnX

dt
= �3HnX � h�annvi(n2

X � n2
eq). (31)

Initially, the WIMPs are in thermal equilibrium and their number density follows a Maxwell–Boltzmann distribution
Eq. (15), decreasing exponentially as the temperature decreases. WIMPs freeze out (see Fig. 8) when the scattering term in
Eq. (1) becomes comparable to the Hubble term,

h�annvinX,eq ' H(Tfr). (32)

 The evolution of the number density 
(Boltzmann equation)
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Freeze-out can happen in the expanding Universe.

in equilibriumout of equilibrium

nism is connected to the phase space distribution and the structure formation or formation of
UCMH can be possible.

In the theory of eMD with dark matter, special phenomena can happen such isocurvature
perturbation, low-bound on the reheating temperature, and quasi-decoupled state.
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  Hot relics:  Weakly Interacting Light Particle

Initially the particles are in the thermal equilibrium and decoupled 
when it is relativistic in the expanding Universe.
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Warm dark matter:

Light	gravitinos	 [Pagels, Primack, 1982]

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.
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( m
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g∗

)

(1)

10MeV m ∼ 1013GeV 1MeV (2)
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2

Sterile	neutrinos [Dodelson, Widrow, 1994]

Warm dark matter may solve small scale problems of CDM but can   
make problems due to the cutoff of the small scale power spectrum 

Possible tension between relic density and the structure formation.

11

They become non-relativistic when 
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Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.
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at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.
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Light	axinos	 [Rajagopal, Turner, Wilczek, 1990]

[Shi, Fuller, 1999]
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WIMP :  Weakly Interacting Massive Particle

Initially the particles are in the thermal equilibrium and decoupled 
when it is non-relativistic: Boltzmann suppression
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1 Introduction

I am honored to be invited at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”. It is not necessary to repeat about the evidences of dark matter, and during
the conference there are many presentations and discussions on the dark matter candidates and
properties.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.
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1 Introduction

I would like to thank the organisers for inviting me at COSMO 2017. I was asked to give a talk
on ”particle candidates of dark matter”. However there are so many candidates of dark matter,
actually every person has his own dark matter. It is impossible for me to list all of them.
Instead I will focus on the classes of DM production and possible cosmological observation.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

There are discrepancies between visible matter and gravitational matter in di↵erent scales,
at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.
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Figure 5: Current and future limits on DM direct detection spin-independent cross section, �SI
p , as a

function of DM mass, m�. The current limits are shown with solid black (LUX [157]), grey (PandaX-

II [158]), brown (XENON100 [183] and XENON1T [156]) and violet (CDMSlite-II [159]) lines. Future

projections correspond to CRESST-III (Phase 2) [194] (light blue), DarkSide G2 [192] (violet triple-dashed

line), DEAP3600 [190] (blue double-dashed line), LZ [188] (black long-dashed line), SuperCDMS at SNO-

LAB [193] (pink short-dashed line) as well as XENON1T/nT [187] (brown dash-dotted lines). We also

show the 95%CL region for the 19-parameter version of the MSSM (green shaded area) and posterior plot

for the allowed parameter space of the CMSSM (brown area enclosed with the solid brown line). The

shaded areas on top of the plot correspond to the favored regions for DM interpretations of anomalies

reported in the literature by the CDMS-Si [176] (blue), CoGeNT [170] (grey) CRESST-II [180] (light blue)

and DAMA/LIBRA [154] (light green) collaborations. The shaded area below the solid orange line on the

bottom of the plot corresponds to the irreducible neutrino background [152].

density. Stronger constraints can be obtained when both DD and ID searches are taken

into account (see, e.g., [201]).

Another phenomenological approach consist in “expanding” the contact operator ap-

proach by introducing specific mediators (“portals”) between the DM sector and the SM

particles in a framework of so-called simplified models. For studies related to DM DD see,

e.g., [202–206]. It has been pointed out that gauge invariance and perturbative unitarity

need to be carefully taken into account when constructing simplified models of DM inter-

actions [207, 208]. For further discussion about the e↵ective theory approach (EFT) and

simplified models see, e.g., [209] and references therein.

3.2 Gamma rays: limits and Galactic Center excess

Gamma-rays represent a promising channel in which to search for dark matter (for reviews

see, e.g., [10, 11, 210]). WIMPs are expected to annihilate at present leading to the

possibility of detecting annihilation products, in particular a spectrum of gamma-rays.

– 19 –

Panda-X

https://arxiv.org/abs/1707.06277
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125	GeV	Higgs	->		multi-TeV	SUSY

➢ 1	loop	correction

In	SUSY	Higgs	mass	is	a	calculated	quantity

1302.5956

The 125 GeV Higgs boson and TeV SUSY

Consistent	with	stringent	lower	limit	on	superpartner	masses

http://arxiv.org/abs/1302.5956
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(a) (b)

Figure 12: (a) The updated 1� and 2� Bayesian marginalized credibility regions of the (m0, m1/2)

plane according to the BayesFITS group. [494, 511]. The most recent constraint from SUSY searches at the

LHC [514], recast using the code of [515], is shown as a solid red line for comparison. (b) The 1� and 2�

profile-likelihood regions in the (m0, m1/2) plane of the CMSSM according to the MasterCode group [516].

The color code describes the mechanism for the neutralino relic abundance in each region.

and ATLAS; the measured values of several b-physics rare decays like, e.g., BR
�
B ! X

s

�
�
,

BR (B
s

! µ+µ�), or BR (B
u

! ⌧⌫); the measurement of the anomalous magnetic moment

of the muon, � (g � 2)µ, which shows a ⇠ 3� discrepancy with the SM value. In the

modern, state-of-the-art approach, these constraints are generally implemented via a global

likelihood function, constructed to compare the measured value of the observables with their

calculated values in the SUSY parameter space. Observables are usually calculated with

sophisticated numerical codes, and the likelihood function is used to determine statistically

preferred likelihood (if one performs a frequentist analysis based on the profile likelihood)

or, alternatively, credibility (if one performs instead a Bayesian analysis based on the

posterior probability) regions of the parameter space.

In Fig. 12(a) we present the 1� and 2� Bayesian credibility regions of the marginalized

posterior probability in the (m
0

,m
1/2) plane of the CMSSM. The figure presents an updated

version of plots previously shown in Refs. [494] and [511], obtained now by incorporating in

the likelihood function the most recent constraints from direct squark and gluino searches at

the LHC [514] (we use the code of Ref. [515] to recast the experimental data) and the recent

constraints from direct searches of DM in LUX [157]. In Fig. 12(b) we show the 1� and

2� likelihood regions in the (m
0

, m
1/2) plane of the CMSSM, following from a frequentist

analysis of Ref. [516]. The color code is used to indicate the di↵erent mechanisms by which

the correct relic density of the neutralino is obtained in the early Universe, see Sec. 4.2.

Note that credibility and likelihood regions are not extremely dissimilar from one

another (within the overlapping ranges of m
0

and m
1/2) despite the very di↵erent concepts

of statistics applied in both panels. In the bottom left corner of Fig. 12(a) one can see

– 41 –

(a) (b)

Figure 13: (a) Solid contours show the Bayesian 1� and 2� credible regions of the CMSSM in the (m�,

�SI
p ) plane, with LHC and DD constraints updated with respect to [494, 511]. The scattered blue points,

sampled from the posterior probability distribution, belong to the 2� region of the global profile likelihood.

For comparison, the solid gray line marks the final published 90% C.L. LUX bound [157], which is included

in the likelihood function. The solid red line shows the recent first limit from XENON1T [156], whereas

the dashed purple line gives the projected reach of XENON1T. (b) The 1� (red solid) and 2� (blue solid)

profile likelihood region in the (m�, �
SI
p ) plane of the NUHM according to the MasterCode group [517].

a Bayesian credibility “island”, representing the bulk of the A-funnel region and a faint

appearance of the stau-coannihilation region surviving the most recent LHC bound, in

agreement with Fig. 12(b). This is the region of the parameter space where the neutralino

is predominantly bino-like.

In Fig. 12(a) the parameter space is scanned to larger values of m
0

and m
1/2, well into

the TeV-scale region that most easily allows one to accommodate the correct value of the

Higgs mass. This region features the existence of a second, and actually larger, “island”

in the parameter space, characterized by an almost pure higgsino-like neutralino that, as

was explained in Sec. 4.2, is characterized by the LSP higgsino-like mass around 1TeV in

order to give the correct relic density. Frequentist analysis also shows the emergence of

this region, despite the smaller region of m
0

and m
1/2 covered in Fig. 12(b).

Taking the view that the Higgs mass implies a multi- TeV scale of superpartners,

having the LSP at 1TeV without having to adhere to any special mechanism for obtaining

the right ⌦�h
2 appears to be a rather intriguing and well motivated solution [495], with

promising prospects for DM searches, as discussed below.

4.3.3 Prospects for WIMP searches in GUT-constrained models

Contours of the 68% and 95% Bayesian credible region of the CMSSM in the (m�, �SI

p )

plane are shown in Fig. 13(a). As stated above, the likelihood function includes the recently

published LUX data [157], which we have incorporated here following a procedure similar

– 42 –

Updated from [Kowalska, Roszkowski, Sessolo 2013] [Roszkowski, Sessolo, Williams 2014]

~1TeV	higgsino	DM:	exciting	prospects	for	1	tonne	detectors

1 TeV Higgsino DM and direct detection

Robust	solution	present	in	a	broad	class	of	unified	SUSY	models
[Indirect Detection by 
C. Weniger]
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SIMP dark matter
(Strongly Interacting Massive Particle)

[Carson, Machacek, Hall 1992] 
[Hochberg et al 2014] 
[HML et al, 2015, 2016, 2017]

3 → 2 process determines freeze-out rather than 2 → 2

address the small scale structure problem of CDM

The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.

Yonit Hochberg1,2,⇤ Eric Kuflik3,† Tomer Volansky3,‡ and Jay G. Wacker4§
1Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA
2Department of Physics, University of California, Berkeley, CA 94720, USA

3Department of Physics, Tel Aviv University, Tel Aviv, Israel and
4SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 USA

We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

m
DM

⇠ ↵
ann

(T
eq

M
Pl

)1/2 ⇠ TeV , (1)

where ↵
ann

is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵

ann

' 1/30 above, T
eq

is the matter-radiation
equality temperature and M

Pl

is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵

ann

' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

m
DM

⇠ ↵
e↵

�
T 2

eq

M
Pl

�
1/3 ⇠ 100 MeV , (2)

where ↵
e↵

is the e↵ective strength of the self-interaction
of the DM which we take as ↵

e↵

' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z

2

symmetry, leads to DM in the keV

↵
e↵

' 1 ↵
e↵

' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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thermal equilibrium. The observed relic density of DM Ωh2 ∼ 0.1 implies the
relation between number density Y and the average energy of DM at present,
inversely proportional to each other. For heavy non-relativistic DM, with the
mass 100 GeV, the abundance is around 10−11 or for the light DM with average
energy is around 100 eV then the abundance must be around 0.01. To be dark
matter it must be located on around this red line.

The WIMP is in the right-lower region.
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The present Universe is dominated by unknown dark component and a baryonic
matter with small portion of photons and neutrinos. 13.7 billion years ago, at
the age of Universe around 380,000 years old, dark matter comprise of 63 %
of the Universe with the other components. At this time the photons decou-
pled became the cosmic microwave background radiation. Before this time the
baryons were tightly coupled to the photons, the structure of baryons could
not grow until they decoupled from the photons. To make present large scale
structures the dark matter which does not interact with photons must exist and
started the structure formation much earlier than the baryons.

The dark matter was first discovered by F. Zwicky in 1933 in the rotational
curve of COMA cluster and now we have more evidences in the cosmological
scales and also in the galaxy scales.
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thermal equilibrium. The observed relic density of DM Ωh2 ∼ 0.1 implies the
relation between number density Y and the average energy of DM at present,
inversely proportional to each other. For heavy non-relativistic DM, with the
mass 100 GeV, the abundance is around 10−11 or for the light DM with average
energy is around 100 eV then the abundance must be around 0.01. To be dark
matter it must be located on around this red line.

The WIMP is in the right-lower region.
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thermal equilibrium. The observed relic density of DM Ωh2 ∼ 0.1 implies the
relation between number density Y and the average energy of DM at present,
inversely proportional to each other. For heavy non-relativistic DM, with the
mass 100 GeV, the abundance is around 10−11 or for the light DM with average
energy is around 100 eV then the abundance must be around 0.01. To be dark
matter it must be located on around this red line.

The WIMP is in the right-lower region.
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thermal equilibrium. The observed relic density of DM Ωh2 ∼ 0.1 implies the
relation between number density Y and the average energy of DM at present,
inversely proportional to each other. For heavy non-relativistic DM, with the
mass 100 GeV, the abundance is around 10−11 or for the light DM with average
energy is around 100 eV then the abundance must be around 0.01. To be dark
matter it must be located on around this red line.

The WIMP is in the right-lower region.
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thermal equilibrium. The observed relic density of DM Ωh2 ∼ 0.1 implies the
relation between number density Y and the average energy of DM at present,
inversely proportional to each other. For heavy non-relativistic DM, with the
mass 100 GeV, the abundance is around 10−11 or for the light DM with average
energy is around 100 eV then the abundance must be around 0.01. To be dark
matter it must be located on around this red line.

The WIMP is in the right-lower region.
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Fig. 8. Relative yield for thermal production of HDM, WDM, CDM WIMPs and ADM, as well as E-WIMPs. In case (I) E-WIMPs are thermally created in
scatterings involving heavier particles in thermal equilibrium starting from x�1

reh = mX/Treh, while in case (II) in decays of heavier particles in thermal
equilibrium. In the case of WIMPs a small difference between Tfr and Tdec is also marked; see text.

4.1. Hot relics

In this case DM relic particles were in thermal equilibrium during an early epoch, and then decoupled at a temperature
Tdec which is larger than their massmX ; see Fig. 8. Since they were still relativistic when they were produced, they are called
‘‘hot relics’’. The energy spectrum froze out when they decoupled so that the distribution is the same as when they were in
the thermal equilibrium; the number density is only redshifted after freeze-out. In this case, the comoving abundance only
depends on the effective degrees of freedom of entropy g⇤S at the time of decoupling. Using Eqs. (13) and (14), one obtains

YX = nX

s

���
Tdec

= 45⇣ (3)
2⇡4

geff
g⇤S(Tdec)

, (27)

where ⇣ (3) ' 1.202 and geff = g (boson) and geff = 3g/4 (fermion), with g denoting the degrees of freedom of the field X .
A well-known example of hot relics are light active (SM) neutrinos which decouple at Tdec ' 1 MeV when g⇤S = 10.75.

Their relic density at present is given by

⌦⌫h2 =
P

m⌫

91.5 eV
, (28)

assuming that they are now almost non-relativistic (i.e. the bulk of their energy density is tied up in their rest mass but their
velocity distribution still typically exceeds their escape velocity so that they are not gravitationally bound).

4.2. Cold relics: case of WIMPs

When Tdec < mX , WIMPs decouple when their typical velocities are still semi-relativistic, v ' c/3. The relic abundance
and freeze-out temperature can be calculated from the Boltzmann equation,

dnX

dt
+ 3HnX = gX

Z
C[fX ]

d3p
(2⇡)3

, (29)

where nX and gX are respectively the number density and spin degrees of freedom of X while C[f ] is the collision operator.
In a homogeneous and isotropic Universe, nX is defined from the phase space density fX by

nX = gX
Z

d3p
(2⇡)3

fX (E, t). (30)

For definiteness – in the process of self-annihilation with the type X + X ! 3 + 4 where we assume that the species 3 and
4 are in the thermal equilibrium – the Boltzmann equation can be written as

dnX

dt
= �3HnX � h�annvi(n2

X � n2
eq). (31)

Initially, the WIMPs are in thermal equilibrium and their number density follows a Maxwell–Boltzmann distribution
Eq. (15), decreasing exponentially as the temperature decreases. WIMPs freeze out (see Fig. 8) when the scattering term in
Eq. (1) becomes comparable to the Hubble term,

h�annvinX,eq ' H(Tfr). (32)
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1 Formulae

2 Dark Matter

Matters are around us, trees, food, animals. Even our body is made of matter.
From the first time of the history, human has been studying these matters,
to find out whether they are eatable or not, they are useful to make house
or clothes, they are strong enough to make weapons etc. Even nowadays we
are trying to understand the cells, materials atoms, stars. The mechanism of
their behaviors, the properties of the materials or the ultimate ingredients of
the matters, or what is the fundamental (the thing we cannot divide any more)
matters. At least now we understand the most of the matters are made of
atoms. They are made of charged particles, protons and electrons, thus they
may interact with light by electromagnetic interactions.

Those are successful at least in the world around us on earth, in the solar
system. However in the larger scales, such as galaxy, clusters of galaxies or in
the cosmological scales, it seems that something is missing.
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1 Introduction

Thank you for inviting me at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

There are discrepancies between visible matter and gravitational matter in di↵erent scales,
at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.

Lyman ↵ flux-power spectrum
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Abundance of EWIMP

The EWIMP density can be ignored

and we can integrate
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They are decoupled already from the thermal plasma, 
however can be produced from thermal scatterings

For example,

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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For heavy mediator,

1 Introduction

Thank you for inviting me at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

There are discrepancies between visible matter and gravitational matter in di↵erent scales,
at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.

Lyman ↵ flux-power spectrum
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(I)	EWIMP	depends	on	the	reheating	temperature

For DM heavier than the reheating temperature
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RH sneutrino or axino with small Yukawa couplings

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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Most of them are produced at low temperature.
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1 Introduction

Thank you for inviting me at COSMO 2017. I was asked to give a talk on ”particle candidates
of dark matter”.

There are so many candidates of dark matter, and a lot of people has explored the possibil-
ities for a long time. It is impossible to list all of them in half an hour for me. I will therefore
focus on the connection of dark matter and cosmology through the origin of dark matter and
the signatures.

Big bang shows that the early Universe was filled with hot plasma made of photons, elec-
trons, and nuclei with thermal equilibrium. Dark matter is supposed to be produced from them
and remains to now. Therefore it plays as a messenger to extract information about the earlier
epochs of the Universe.

There are discrepancies between visible matter and gravitational matter in di↵erent scales,
at galactic scale, cluster scale and cosmological scales. All these problems can be solves at once
if we introduce a kind of new particle as dark matter. So it is very tempting to consider the
particle as a solution for dark matter problem. However there are not many properties known
actually for dark matter. The known is that its stability, weak interaction, present relic density
and the cold or warm-ness.

At least it is true that the particles in the standard of particle physics cannot play as dark
matter. Since the massive neutrinos, considering the mass upper bound, the relic density is too
small that that for dark matter, and also their free streaming is too large to make galaxies. So
we need new particle beyond standard model.

There are countless candidates of dark matter. Actually every model beyond standard
model has its own dark matter candidate. This i the plot in the plane of DM mass and the
interaction to visible matter. it seems that any parameter region can be for dark matter.

Lyman ↵ flux-power spectrum
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(II)	EWIMP	does	not	depend	on	the	reheating	temperature

can be produced via scatterings of thermal particles.
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DM can be produced via decay of thermal particles

with decay rate           and mass

H. Baer et al. / Physics Reports 555 (2015) 1–60 21

4.3.2. �int ⇠ Tn with n > 3
If �int ⇠ Tn with n > 3, then the abundance will depend on higher powers of the reheating temperature as Trehn�2. Dark

matter produced this way will have thermal spectrum but will not be in thermal equilibrium, just like in the case of n = 3.
A specific example of n = 5 in a model with heavy Z 0 gauge boson was given in Ref. [245].

4.3.3. �int ⇠ Tn, n < 3 and FIMPs
In this case (case II in Fig. 8), the production of relics takes place predominantly at low temperatures T ⇠ m, just before

the Boltzmann suppression kicks in. When the scatterings proceed through renormalizable interactions, the corresponding
cross section depends on the temperature as � = /T 2, where  is some constant. In this case, the thermal production of
decoupled particles is independent of the reheating temperature and is given by

Y (T0) ' 135
p
10⇣ (3)2

p
gMP

2⇡7



T1
, (41)

where T1 is the temperature of the order of themass of the particles participating in the scatterings. These sort of DMparticles
have been dubbed FIMPs by Hall et al. [222] for feebly interacting massive particles, but perhaps a more appropriate name
would be ‘‘frozen-in massive particles’’.

4.3.4. E-WIMPs from decays
A further case occurs when E-WIMPs are produced from decays of thermal particles with mass M and a decay rate �

(case II in Fig. 8). In this situation, the comoving abundance is given by [244]
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These processes have been used for the production of axinos, right-handed scalar neutrinos, etc.

4.4. Asymmetric dark matter (ADM)

The idea behind asymmetric dark matter (ADM) [246–248] is based on an asymmetry between DM particles and
their antiparticles (‘‘anti-DM’’). In the early Universe, only the number density difference between the two (asymmetric
component) remains after the annihilation of the symmetric components of DMand anti-DM. In this case, the relic density of
ADM is set by the asymmetry in their initial populations, and not by the thermal freeze-out. This is similar to themechanism
of generating the baryon number density which relies on an initial baryon asymmetry.

Some examples of ADM include technibaryons [249,250], mirror dark matter [251–255], scalar neutrinos [256], pure
higgsinos [257] and others.

The origins of the asymmetry of ADM and of the baryon asymmetry can be related [258]. In this case, the mass of ADM
is calculable in a specific model as

mADM = ⌘B

⌘ADM

⌦ADM

⌦B
mp = O(1 � 10)mp, (43)

where the baryon and ADM asymmetries are parametrized by

⌘i ⌘ ni � nī

s
, for i = B or ADM (44)

with entropy density s. If the asymmetry of both ADM and baryons is the same, ⌘ADM = ⌘B ' 10�10, the energy density
of DM and baryons are related by ⌦DM/⌦B ' 5 [4], which implies the existence of a light DM with mass around 5 GeV.
In this regard, it is interesting to note that the light DM has been supported by several claims of signals in direct detection
experiments: DAMA/LIBRA [67], CoGeNT [68,259], CRESST [69] andCDMS-II (Si) [70],which however have been contradicted
[74,75,72,76] by other experiments: CDMS-II [260,261], XENON10 [262], XENON100 [263,20], and the recent null result from
CDMSLite [73] and LUX [21].

To generate the asymmetry from an initially symmetric Universe in the sector of either DM or baryons, the mechanism
should satisfy the well known Sakharov conditions [264]. First, the asymmetry can be created in one of the sectors at high
temperatures and then subsequently transferred to the other sector, or both asymmetries can be created together at the
same moment. At low temperatures, the interactions for generating and transferring asymmetries are frozen.

In Fig. 9, various mechanisms for DM production in the ADM models (Table 1 of Ref. [246]) are illustrated. One obvious
mechanism is to relate the visible (V) sector baryon asymmetry to the dark (D) sector asymmetry via a heavy particle
decay both to V and D sectors. These are denoted as 1 and 2 categories, where 2 stops over at the intermediate sector I.
A well-known mechanism is the Kitano–Low mechanism [265]. Categories 3–5 use the mechanisms without the decaying
mother particle. Category 3 uses one conserved quantum number which is carried by D and V sectors. So, ‘transfer’ means
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Due to their suppressed interactions with ordinary matter, the E-WIMP number density is small enough and one may
usually neglect the back reaction of E-WIMP annihilation. In this case the comoving abundance can easily be obtained by
integrating the production rate over the temperature from the reheating temperature to the present one,

Y (T0) =
Z Treh

T0

�intneq

s(T )H(T )T
dT , (39)

where �int = nh�vi in general depends on the energy of the participating particles and thus the temperature of the
background. Also, T0 here and below is any low temperature below which entropy is assumed to be conserved.

A specific example of E-WIMPs is the axino of SUSY models augmented with the PQ symmetry. Axino interactions with
SM particles and their superpartners are strongly suppressed by the axion decay constant fa.

The quantity that is very important in axino astroparticle physics and cosmology, and at the same time most poorly
known, is itsmassmã. In the literature there exist several theoretical calculations of the axinomass [161,214,215]. Amethod
for calculating the axino mass applies to any goldstino (the superpartner of a Goldstone boson). A goldstino related to the
Goldstone boson has a root in a global U(1) symmetry and receives its mass below the SUSY breaking scale. SUSY breaking
triggers the super-Higgs mechanism and is related to the gravitino mass mG̃; this issue was recently clarified in Ref. [215].
Even though a typical expectation for the axinomass is to be of ordermG̃, the theoretically allowedmass range encompasses
amuchwider range from sub- eV tomulti- TeV, allowing axino LSPs to be hot, warm or cold DM.Wewill discuss these cases
in more detail below.

In an early paper [211], a very light HDM-like axino from the decay of a photinowas shown to constrain the photinomass
dependence on the axion decay constant fa. In [223], Rajagopal, Turner and Wilczek considered axinos with mã in the keV
range. Axinos in this mass range can give the right amount of DM if produced from freeze-out in thermal equilibrium and
can constitute WDM in the standard Big Bang cosmology. However, this kind of thermal axino is cosmologically irrelevant
if the reheating temperature Treh after inflation is much lower than the Peccei–Quinn (PQ) symmetry breaking scale fa (see,
however, Refs. [224,225]). In this case, the population of primordial axinos is strongly diluted by cosmic inflation.

Axinos can, however, be subsequently re-generated after reheating in spite of their exceedingly small interaction
strength. In axion models such as KSVZ, the relic abundance of thermal axinos changes linearly with the reheating
temperature and depends on a SUSY axion model. This special feature might allow for a glimpse of the earliest time after
inflation through the reheating temperature inferred from the relic density of axino DM.16 Alternatively, in the DFSZ SUSY
axion model, the direct coupling of axinos to Higgs and gauge bosons leads to maximal production rates at temperatures
T ⇠ mã so that axinos are thermally produced via the ‘‘freeze-in’’ process [222].

The remaining physical state of the axion supermultiplet is the R-parity even scalar saxion s. Its mass ms comes from
soft SUSY breaking and hence is expected to be of order mG̃. In the early Universe, it is expected to eventually decay to
SM particles: s ! gg in the KSVZ model and s ! gauge/Higgs bosons in DFSZ. An important cosmological implication
of saxion production and decay to SM particles is the possibility of late-time (post freeze-out) entropy production and a
dilution of frozen-out cosmic particles and the cosmic energy density. In axion cosmology, the effect leads to an increase in
the cosmological upper bound on fa [233–237] for a given assumption on ✓i.

Depending on their couplings, saxions may also decay into axion or axino pairs. In the first case, the axions can affect
the cosmicmicrowave background temperature anisotropy by contributing an additional relativistic component [238–243],
often parametrized by the allowed number of additional species of neutrinos �Neff . There is some weak evidence for a non-
zero value of �Neff beyond the SM value, but a conservative limit gives �Neff . 1.6 [4,242]. In the case where saxions
decay to axinos or other SUSY particles, their late decays may augment the abundance of the LSP dark matter, be it axinos
themselves, or via cascade decays to neutralinos, gravitinos or something else.

4.3.1. �int ⇠ T 3

For the case of a constant E-WIMPs scattering cross section h�vi = �0 – which happens when the interaction is induced
by non-renormalizable terms as in the case of axions, KSVZ axinos or gravitinos – particles are predominantly produced at
the highest temperature (case I in Fig. 8). Then, the comoving abundance is proportional to the highest temperature in the
integration range [244]:

Y (T0) =
Z Treh

T0

h�vin2
eq

s(T )H(T )T
dT ⇠ 135

p
10MP

2⇡7g3/2
⇤

�0Treh. (40)

16 It is also worth mentioning that, due to the strongly suppressed interaction strength, it is not necessary to assume R-parity conservation for very light
axinos to constitute DM. In connection with the recent 3.5 keV X-ray line from the Andromeda galaxy and Persus galaxy cluster [226–228], a possible
solution in terms of warm decaying axino DM has been pointed out in the presence of R-parity violation [229,230]. See also [231]. However there is a
different claim with no statistically significant line emission near 3.5 keV [232].
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In this case (case II in Fig. 8), the production of relics takes place predominantly at low temperatures T ⇠ m, just before

the Boltzmann suppression kicks in. When the scatterings proceed through renormalizable interactions, the corresponding
cross section depends on the temperature as � = /T 2, where  is some constant. In this case, the thermal production of
decoupled particles is independent of the reheating temperature and is given by

Y (T0) ' 135
p
10⇣ (3)2

p
gMP

2⇡7



T1
, (41)

where T1 is the temperature of the order of themass of the particles participating in the scatterings. These sort of DMparticles
have been dubbed FIMPs by Hall et al. [222] for feebly interacting massive particles, but perhaps a more appropriate name
would be ‘‘frozen-in massive particles’’.

4.3.4. E-WIMPs from decays
A further case occurs when E-WIMPs are produced from decays of thermal particles with mass M and a decay rate �

(case II in Fig. 8). In this situation, the comoving abundance is given by [244]

Y (T0) ' 405
p
10⇣ (5)MP

8⇡4g3/2
⇤

�

M2 . (42)

These processes have been used for the production of axinos, right-handed scalar neutrinos, etc.

4.4. Asymmetric dark matter (ADM)

The idea behind asymmetric dark matter (ADM) [246–248] is based on an asymmetry between DM particles and
their antiparticles (‘‘anti-DM’’). In the early Universe, only the number density difference between the two (asymmetric
component) remains after the annihilation of the symmetric components of DMand anti-DM. In this case, the relic density of
ADM is set by the asymmetry in their initial populations, and not by the thermal freeze-out. This is similar to themechanism
of generating the baryon number density which relies on an initial baryon asymmetry.

Some examples of ADM include technibaryons [249,250], mirror dark matter [251–255], scalar neutrinos [256], pure
higgsinos [257] and others.

The origins of the asymmetry of ADM and of the baryon asymmetry can be related [258]. In this case, the mass of ADM
is calculable in a specific model as

mADM = ⌘B

⌘ADM

⌦ADM

⌦B
mp = O(1 � 10)mp, (43)

where the baryon and ADM asymmetries are parametrized by

⌘i ⌘ ni � nī

s
, for i = B or ADM (44)

with entropy density s. If the asymmetry of both ADM and baryons is the same, ⌘ADM = ⌘B ' 10�10, the energy density
of DM and baryons are related by ⌦DM/⌦B ' 5 [4], which implies the existence of a light DM with mass around 5 GeV.
In this regard, it is interesting to note that the light DM has been supported by several claims of signals in direct detection
experiments: DAMA/LIBRA [67], CoGeNT [68,259], CRESST [69] andCDMS-II (Si) [70],which however have been contradicted
[74,75,72,76] by other experiments: CDMS-II [260,261], XENON10 [262], XENON100 [263,20], and the recent null result from
CDMSLite [73] and LUX [21].

To generate the asymmetry from an initially symmetric Universe in the sector of either DM or baryons, the mechanism
should satisfy the well known Sakharov conditions [264]. First, the asymmetry can be created in one of the sectors at high
temperatures and then subsequently transferred to the other sector, or both asymmetries can be created together at the
same moment. At low temperatures, the interactions for generating and transferring asymmetries are frozen.

In Fig. 9, various mechanisms for DM production in the ADM models (Table 1 of Ref. [246]) are illustrated. One obvious
mechanism is to relate the visible (V) sector baryon asymmetry to the dark (D) sector asymmetry via a heavy particle
decay both to V and D sectors. These are denoted as 1 and 2 categories, where 2 stops over at the intermediate sector I.
A well-known mechanism is the Kitano–Low mechanism [265]. Categories 3–5 use the mechanisms without the decaying
mother particle. Category 3 uses one conserved quantum number which is carried by D and V sectors. So, ‘transfer’ means

(II)	EWIMP	does	not	depend	on	the	reheating	temperature
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RH sneutrino as CDM
[Asaka, Ishiwata, Moroi 2005]
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Right-Handed Sneutrino as Cold Dark Matter

Takehiko Asaka, Koji Ishiwata and Takeo Moroi
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(Dated: December 9, 2005)

We consider supersymmetric models with right-handed neutrinos where neutrino masses are purely
Dirac-type. In this model, right-handed sneutrino can be the lightest supersymmetric particle and
can be a viable candidate of cold dark matter of the universe. Right-handed sneutrinos are never
thermalized in the early universe because of weakness of Yukawa interaction, but are effectively
produced by decays of various superparticles. We show that the present mass density of right-
handed sneutrino can be consistent with the observed dark matter density.

PACS numbers: 14.60.Pq, 12.60.Jv 98.80.Cq, 95.35.+d

In recent years, various experiments have confirmed
the phenomenon of neutrino oscillation. (See, for ex-
ample, [1, 2, 3, 4, 5].) Those results strongly suggest
very small but non-vanishing neutrino masses. This fact
raises serious problems because the non-vanishing neu-
trino mass is not allowed in the standard model of parti-
cle physics and also because suggested values of neutrino
masses are extremely small. The easiest way of generat-
ing neutrino masses is to introduce right-handed neutri-
nos; with this extension, Yukawa couplings of neutrinos
may exist. Consequently, neutrinos can acquire masses
after electroweak symmetry breaking.

Even with right-handed neutrinos, there are two dif-
ferent classes of scenarios for generating neutrino masses.
Probably, more popular one is with Majorana masses for
right-handed neutrinos, i.e., so-called “seesaw” scenario
[6]. In this scenario, smallness of the neutrino masses is
explained by the Majorana masses of right-handed neu-
trinos which are much larger than the electroweak scale.

Small neutrino masses can be, however, realized with-
out seesaw mechanism. With vanishing Majorana masses
of the right handed neutrinos, which may be the con-
sequence of exact lepton-number symmetry, neutrino
masses become Dirac-type. As we will see, in this case,
Yukawa coupling constants for neutrinos are, roughly
speaking, O(10−13) or smaller to make the neutrino
masses to be consistent with the results of neutrino-
oscillation experiments. One might think that such small
Yukawa coupling constants are unnatural. It is, how-
ever, natural in ’t Hooft’s sense [7] since some symme-
try (i.e., chiral symmetry in neutrino sector) is restored
in the limit of vanishing neutrino Yukawa coupling con-
stants. In this model, however, right-handed neutrinos
are mostly irrelevant for collider experiments and cos-
mology since their interaction is extremely weak.

In supersymmetric models, which is strongly motivated
as a solution to various problems in the standard model of
particle physics, like hierarchy and naturalness problems,
situation changes. In particular, superpartners of right-
handed neutrinos may play an important role in cosmol-
ogy. When small neutrino masses are purely Dirac-type,
masses of right-handed sneutrinos are dominantly from
effects of supersymmetry (SUSY) breaking. Then, one
should note that the lightest superparticle (LSP) may

be the (lightest) right-handed neutrino ν̃R. Importantly,
since the LSP ν̃R becomes stable by the R-parity con-
servation and also is very weakly interacting, it can be
a viable candidate of cold dark matter (CDM) provided
that its relic density is the right amount.

In this letter, we consider the minimal supersymmet-
ric standard model (MSSM) with three generations of
right-handed (s)neutrinos where small neutrino masses
are purely Dirac-type. In particular, we study the case
where the LSP is the lightest right-handed sneutrino and
see if the relic density of ν̃R can become consistent with
the present CDM density. Since interaction of right-
handed sneutrino is very weak, it is not thermalized in
thermal bath. Even in this case, some of decay (and scat-
tering) processes produce ν̃R. As we will see, in some
parameter region, the density parameter of right-handed
sneutrino Ων̃R can be O(0.1), which is consistent with the
CDM density suggested by the WMAP [8]:

Ωch
2
100 = 0.1126+0.0161

−0.0181, (1)

where h100 is the Hubble constant in units of
100 km/sec/Mpc.

Let us first introduce interaction and mass terms in
Lagrangian. The important part of superpotential is

W = yνĤuL̂ν̂c
R + µHĤuĤd, (2)

where Ĥu = (Ĥ+
u , Ĥ0

u) and Ĥd = (Ĥ0
d , Ĥ−

d ) are up- and

down-type Higgses, and L̂ = (ν̂L, l̂−L ) the left-handed lep-
ton. (In this letter, “hat” is for superfields while “tilde”
is for superparticles with odd R-parity.) Here, we omit
flavor indices for simplicity. With this superpotential,
neutrino mass is generated after electroweak symmetry
breaking: mν = yν⟨H0

u⟩ = yνv sinβ, where v ≃ 174 GeV
and tanβ = ⟨H0

u⟩/⟨H
0
d⟩. Thus, the Yukawa coupling con-

stant yν is determined once the neutrino mass is fixed:

yν sin β = 3.0 × 10−13 ×

(

m2
ν

2.8 × 10−3 eV2

)1/2

. (3)

For simplicity, we consider the case where tan β is rela-
tively large. In this case Hu behaves like the standard-
model Higgs; Hu ≃ HSM. The lightest Higgs boson
h is contained in HSM, and we take its mass to be

3

density ρcrit, which is given by [ρcrit/s]now ≃ 3.6 h2
100 ×

10−9 GeV, we obtain density parameter of right-handed
sneutrino Ων̃R ≡ (ρν̃R + ρν̃∗

R
)/ρcrit.

Importantly the present value of Yν̃R is insensitive to
the maximal temperature Tmax of the universe. To see
this, it is instructive to roughly estimate Yν̃R . Neglecting
the Lorentz factor, let us approximate the decay term as
Cdecay ∼ Nmode

16π y2
νmSUSYnSUSY, where mSUSY and nSUSY

are typical mass scale and number density of (parent)
superparticles, respectively, and Nmode is the number
of possible decay mode. The number density nSUSY is
∼ T 3 when the temperature is higher than mSUSY, and
is exponentially suppressed when T ≪ mSUSY. The in-
tegration in Eq. (19) is then dominated at the tempera-
ture of T ∼ mSUSY. Consequently, we obtain Yν̃R(T ≪

mSUSY) ∼ Nmodey
2
νM∗

16πg
3/2
∗ mSUSY

, with M∗ ≃ 2.4×1018 GeV being

the reduced Planck scale. As one can see, the present Yν̃R

is insensitive to thermal history for T ≫ mSUSY. Thus,
Ων̃R does not depend on, for example, reheating temper-
ature after inflation. We can also estimate the density
parameter; using the above estimation of Yν̃R , we obtain
Ων̃Rh2

100 ∼ O(10−3) × Nmode(
yν

3×10−13 )2(
mν̃R

mSUSY
). With

this naive estimation, Ων̃R becomes smaller than the cur-
rently observed CDM density. In some case, however,
Ων̃R becomes much larger, as we see below.

Now, we are at the position to quantitatively estimate
Ων̃R . We have numerically evaluated the yield variable
using Eq. (19) for several choices of parameters. The relic
density of right-handed sneutrino strongly depends on
the neutrino Yukawa coupling constant which is related
to the neutrino mass. Neutrino-oscillation experiments
determine only the mass-squared differences of neutrinos;
here we adopt [3, 5]

[

∆m2
ν

]

atom
= 2.8 × 10−3 eV2, (20)

[

∆m2
ν

]

solar
= 7.9 × 10−5 eV2. (21)

First, let us consider the case where the masses of the
neutrinos are hierarchical. In this case,

[

∆m2
ν

]

atom
al-

most corresponds to the mass-squared of the heaviest
neutrino which we call third generation neutrino. In this
case, the largest Yukawa coupling constant is given by

y(3)
ν ≃ 3 × 10−13, and other Yukawa coupling constants

are much smaller. (Here and hereafter, the superscript

“(i)” indicates that y(i)
ν is for neutrino in i-th generation.)

As a result, production of ν̃R is dominated by processes
where the third-generation (s)neutrino is related.

As show in in Eqs. (9) − (15), there exist various
decay processes which produce ν̃R. Among them, Hig-
gsino decay process dominates the ν̃R production when
the effects of the tri-linear scalar couplings are negligi-
ble. In this case, however, Ων̃R becomes too small to
be consistent with observation of the CDM relic density.
Indeed, when mν̃R = 100 GeV, for example, we found
Ων̃R = 0.004 − 0.001 for µH = 200 GeV − 1 TeV, which
is much smaller than the present CDM density.

If some of other decay processes are effective, Ων̃R can
become significantly larger. In particular, when the tri-

100 110 120 130 140 150
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1

m      (GeV)

R
ν~

Ω
h

Lν
~

1
0

0
2

4
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2
a    = 1ν

5
6

WMAP

FIG. 1: Ων̃Rh2
100 as a function of mν̃L for aν = 1−6. Here, we

take mν̃R = 100 GeV, m
W̃

= 300 GeV, and µH = 150 GeV.
The shaded band corresponds to the CDM density suggested
by the WMAP.

linear coupling constant Aν is non-vanishing, decays of
various superparticles produces ν̃R sufficiently.

One possible enhancement can be due to the process
W̃ → ν̃R + · · ·; if the mass of left-handed sneutrino
ν̃L is close to mν̃R , production of ν̃R is enhanced be-
cause the left-right mixing of sneutrinos becomes larger
as |m2

ν̃L
−m2

ν̃R
| becomes smaller. (See Eqs. (13) − (15).)

In fact, Ων̃R can be of O(0.1) with a mild degeneracy of
ν̃R and ν̃L. To see this, in Fig. 1, we show Ων̃Rh2

100 as a
function of mν̃L . We can see that 10 − 20 % degeneracy
is enough to realize ν̃R-CDM even if aν ≤ 3. Here, we
take mW̃ = 300 GeV. If we increase the Wino mass, Ων̃R

decreases since the temperature-dependent VEV vT be-
comes suppressed at high temperature. We also note that
the process H̃+ → ν̃Rτ+

R gives additional contribution to
Ων̃R , which may become sizable when tan β is large. We
found that Ων̃R can be ∼ 40% larger for tanβ = 55.

Even without mass degeneracy between ν̃R and ν̃L, ν̃R-
CDM is realized if aν ≫ 1. Although such a very large
value of aν may not be realized in simple supergravity
models, it is phenomenologically viable.

Next, we turn to consider the case of degenerate neu-
trino masses, where there is another possibility of en-

hancing Ων̃R . In this case, the relation y(1)
ν ≃ y(2)

ν ≃ y(3)
ν

holds and all three generations of right-handed sneutri-
nos may be effectively produced. The point is that the
neutrino Yukawa coupling constants can be much larger
than ∼ 3× 10−13, and hence Ων̃R can be more enhanced
than the hierarchical case. ν̃R-CDM can be realized if the
neutrino masses are O(0.1 eV) even if there is no other
enhancement.

So far, we have only discussed the production of ν̃R

by the decay of superparticles in chemical equilibrium.
In general, ν̃R can be also produced after superparti-

with small Yukawa coupling

RH sneutrinos are never 
thermalised, but effectively 
produced by decays of various
 superparticles.
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Figure 1. Thermal axino yield Y TP
ã as a function of the reheating temperature TR from strong

interactions using the effective mass approximation (black). We use the representative values of
fa = 1011 GeV and meq = mg̃ = 1 TeV. For comparison, we also show the HTL approximation
(dotted blue/dark grey) and that of Strumia (green/light grey). We also denote the yield from
squark (solid green/light grey) and gluino decay (dotted red), as well as out-of-equilibrium bino-
like neutralino decay (dashed black). Here we used the interactions in eq. (3.3) and eq. (3.7) for the
KSVZ model. We use the same definition of reheating temperature in the instantaneous reheating
approximation for the three methods.

the axino production, but we will neglect them here since such dimension-4 scatterings are

usually less important than the decays [3].

We have evaluated the thermal production of axinos numerically and present the results

in figures 1 and 2 for representative values of fa = 1011 GeV and meq = mg̃ = 1TeV. We

do not consider here the dependence on masses, however see ref. [3]. For different values

of fa the curves move up or down proportional to f2
a . In figure 1, we show the axino yield

Y (where Y ≡ n/s is the ratio of the number density to the entropy density) from strong

interaction in the KSVZ model. Our result obtained with the effective mass approximation

is shown with the solid black line. Compared to the previous plot in ref. [2], the inclusion

of the squark decay changes the plot at low reheating temperature, while the other new

squark interactions do not have any noticeable effect. There is a factor 3 difference in the

abundance at high reheating temperature compared to that in figure 2 of ref. [2], which

was a numerical error at that time and was corrected later. For comparison, the axino

yield from scatterings using the HTL approximation [5] is plotted with the blue (dashed)

line and Strumia’s result [6] is shown with the green line.

– 16 –

Axino Thermal Production

EWIMP(I)

(II) EWIMP	(FIMP)

for	KSVZ	axino

:	reheating	temperature	
	dependent

:	generated	at	low		
	temperature

[Choi,Covi,Kim,Roszkowski 2012]

[Covi,Kim,Kim,Roszkowski 2001]

[Covi,Kim,Roszkowski 1999]

DFSZ	axino [Bae, Choi, Im 2011]
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FIG. 2: Axino phase space distributions from di↵erent production processes (solid lines) and the Fermi-
Dirac distribution (dashed) as a function of comoving momentum, q = pã/Tã . The phase space distribution
is normalized to give

R
dq q2f(q) = 1. The left panel shows the phase space distributions from Higgsino

2-body decay, s- and t-channel scattering, and wino 3-body decay. The right panel compares the phase
space distributions from Higgsino decay into massless HL, decay of the lighter Higgs doublet into massless
Higgsino and that into massive Higgsino.

• Scattering of Higgsino via s-channel exchange of the lighter Higgs doublet (middle panel in

Fig. 1): tcR +QL ! ã+ eH. Here, tR is right-handed top, QL is third generation left-handed

quark doublet, and they are taken as massless particles. We also assume that HL is massless.

• Scattering of Higgsino via t-channel exchange of the lighter Higgs doublet (middle panel in

Fig. 1): eH + tcR ! ã + QL, eH + QL ! ã + tR. The particle content is the same as the

s-channel scattering, but to avoid infrared divergence, we take account of the thermal mass

of intermediate HL as mHL
(T ) ' YtT/2, where Yt = yt cos↵/ sin� (yt ' 1 is the top Yukawa

coupling of SM Higgs, and cos↵ ' sin� is the mixing of Higgses).

• 3-body decay of wino via virtual Higgsino (right panel in Fig. 1): fW ! ã + HL + H⇤
L. In

this case, we assume that Higgsino is heavier than wino, and HL is massless.

Freeze-in production becomes e�cient when the temperature drops to the threshold scale: Tth '
µ for Higgsino decay or scatterings, Tth ' mHL

for decay of the lighter Higgs doublet, and Tth ' M2

for wino decay. Since freeze-out of heavy particles such as Higgsino, Higgs, and wino occurs after

axino freeze-in, we assume that their phase space distributions are thermal as well as those of

the other SM particles. It is convenient to define the axino temperature, Tã, as in Eq. (19)

with the decoupling temperature being the threshold scale (Tth = µ, mHL
, or M2). Since the

axino temperature and momentum are simply redshifted, comoving momentum, q = pã/Tã, is

independent of time. Therefore, the phase space distribution for comoving momentum, fã(q), is

constant after freeze-in.

Axino as WDM

[Bae, Kamada, Liew, Yanagi, 1707.06418]

[K.Yanagi’s poster]
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FIG. 4: Squared transfer functions from respective production processes (left; solid) and in realistic axino
DM cases (right; solid). The conventional WDM models with mWDM = 2.0, 3.3, and 4.09 keV are shown for
comparison (dashed).

with the Ly-↵ forest constraint of mWDM = 3.3 keV, since the cuto↵ scale is clearly smaller. On

the other hand, Higgsino s-channel scattering (blue solid) seems as warm as 3.3 keV WDM, and

wino 3-body decay (purple solid) is consistent with the constraint.

Interestingly, we can infer these results by the discussion of warmness introduced in Sec. III. The

lower bound on the thermally distributed (conventional) WDM mass and that on non-thermally

distributed WDM mass are related as

m = 7keV

✓
mWDM

2.5 keV(�̃/3.6)�3/4

◆4/3

, (42)

where �̃ = 3.6 is the reference value for the Fermi-Dirac distribution. Using �̃ in Table I, we

obtain 2.5 keV(�̃/3.6)�3/4 = 2.9, 2.7, 3.2, and 3.6 keV respectively for 7 keV axino DM from 2-

body decay, t-channel scattering, s-channel scattering, and 3-body decay. Therefore if we take

mWDM = 3.3 keV as a Ly-↵ forest constraint, we expect that axino DM from 2-body decay and

from t-channel scattering are inconsistent, that from s-channel scattering is comparable, and that

from 3-body decay is consistent with the Ly-↵ forest constraint. The expectation agrees with the

result that we obtain by computing and comparing the squared transfer functions. This analytic

method through Eq. (42) is far simpler and provides the direct correspondence between the phase

space distributions and the mass bounds.

We also calculate the linear matter power spectra in the realistic axino DM models studied in

Sec. IVC, which are shown in the right panel of Fig. 4. In BM1 (Higgsino NLSP), axino DM

production is dominated by 2-body decay of the lighter Higgs doublet into massive Higgsino and

axino. In BM2 (wino NLSP), depending on the reheating temperature, axinos are dominantly

Linear matter power spectrumPhase space distribution

Axino is colder than ordinary WDM.

DFSZ	axino
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Non-thermal production:  from decay of heavy particles
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X= moduli, Q-ball, inflaton, cosmic strings, 
axino, gravitino, …..

X

After the discovery Higgs boson, the explanation of the 125 GeV Mass implies mul-TeV
spectrum for the susy particles, which is very consistent with the collider constraints.In this
respect, the natural candidate for DM is TeV Higgsino, which is exciting since the direct
detection exp with 1-tonne can probe them. This Higgsino is the robust solution also present
in a broad class of unified SUSY models. TeV Higgsino also can be probed by the indirect
detection which will be discussed by Viel after my talk.

Not only for WIMP, but the freeze-out of strongly interacting massive particle, SIMP, can
give correct abundance if 3 to 2 scattering is important in the early Unvierse. SIMP can help
to solve the small scale problem of CDM and recently the simple realization was introduced
with WZW term.

How about extremely weakly interaction particles? Maybe they cannot be in thermal equi-
librium in the early Universe, though some small amount can be produced. We can understand
the abundance with this figure for a GeV mass with change the cross section. For WIMP, Y is
suppressed. For weaker interaction, the abundance is increasing but still freeze-out with over-
abundance. But for exteremely wimp, they are not in thermal equilibrium and Y is suppreseed
again give correct abundance.

For this EWIMP, there are 2 cases, case one is that most DM is produced at high tempera-
ture, the other is at small temperature. The special example of the second case is called FIMP,
but FIMP is the new mechanism, which was already studied many times in the literatures in
the axino or RH sneutrino already.

Since EWIMP is not in thermal, their number can be neglected in the Boltzmann eq.
RH side, then the equation is easily integrated and the temperature dependance comes through
cross section.When the cross section is temperature independent like gravitino or axion with has
non-renormalizable interation, the final abundance is proportional to the reheating temperature
linearly. Another example is the heavy mediator, in this case sigma is proportional to T
squared, thus the abundance is cubic of reheating temperature. If DM is heavier than reheating
temperature, sigma depends on T to the 6 and the abundance is 7th of reheating temperature.
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Asymmetric dark matter
freeze-out with particle-antiparticle asymmetry

*Baryons decouple from thermal equilibrium much earlier than without asymmetry
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related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.
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Asymmetric dark matter of GeV mass

The abundance Y of dark matter is determined from the asymmtry.density to the entropy density.
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For the same origin of asymmetry for baryons and DM,density to the entropy density.
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≃ ⟨σv⟩Mp ⟨σv⟩ ≃ 1

M2
p

(

Mg
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(12)

sR3 = constant t ≃ Mp

T 2
(13)

ṅ+ 3Hn = ⟨σv⟩(n2
eq − neqnG) Y ≡ n

s

Ẏ = ⟨σv⟩neq
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(14)

mG ≪ Mg σn ∼
(

Mg
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)2 T 3

M2
p

H ≃ g1/2∗ T 2 Tf ∼ Mp

(

mG

Mg

)2

(15)

2

Stable Technibaryon [Nussinov, 1985]

Asymmetric dark matter [Kaplan, Luty, Zurek, 2009]

Asymmetric WIMP [Graesser, Shoemaker, Vecchi, 2011; Iminniyaz, Drees, Chen, 2011]

Mirror baryons as dark matter [review in Ciacelluti, 2011]

10MeV m ∼ 1013GeV 1MeV ηDM = ηB (4)

Tf > Treh Tf < Treh Treh ≃ 1010GeV (5)

mG ΩGh
2 ≃ 0.1 Ωh2 > 0.1 Ωh2 < 0.1 m ∼ 100 eV (6)

(Ωh2 ∼ 0.1) log σint m = 100GeV σweak σvery weak (7)

ΩDMh2 ≃ 0.14

(

90

π2g∗(TD)

)1/2
( mDM

100GeV

)

(

10−8GeV−2

⟨σann⟩v

)(

2GeV

TD

)

(8)

ΩDM =
mDM

mX
ΩX (9)

mDM ≃ ΩDM

ΩB
mB ≃ 5 GeV (10)

ηB = 0 ηB = 10−9 YDM = ηDM ≡ nDM − nanti DM

s
(11)

m ! 2 GeV m ∼ 2 GeV Ω > 1 Ω < 1 m ∼ 100 GeV (12)

Y =
135ζ(3)

8π4

gDM

g∗
⟨σannv⟩ ≃ G2

Fm
2 Y ∝ 1

m3
(13)

log Y log ⟨E⟩ E =
√

m2 + |p⃗|2 Y ≃ H

s⟨σannv⟩
∝ xf√

g∗⟨σv⟩m
(14)

≃ 0.1 Y ≃ 0.01 ⟨E⟩ ≃ 100 eV ⟨E⟩ ≃ m = 100 GeV Y ≃ 10−11

(15)

√
s ≫ mG ψµ = Ψµ − 1√

6
γµψ + i

√

2

3

∂µψ

mG
(16)

⟨v⟩ < 0.01 km/ sec (95%CL) l ≃ 1000 (17)

Ωh2 =
( mG
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)

(
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(18)
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Non-thermal production:  Bosonic Coherent Motion (BCM)

The oscillating scalar fields in the quadratic potential behaves like 
cold dark matter (zero pressure fluid) in the zeroth, linear, 2nd 
order and even fully non-linear order in the super-Jeans scale.

Example : axion, fuzzy CDM, ALP

[Noh, Hwang, Park, 1707.08568]
[Khlopov 1985, Nambu, Sasaki 1990, Ratra 1991, Hwang 1997, 
Sikivie, Yang 2009, Hwang, Noh 2009 ]

[Jose Cembranos’s Talk]
[Alma Gonzalez’s Talk]
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DM during early 
Matter Domination

• Creation of isocurvature perturbation

• Low bound on reheating temperature

33

• Quasi-decoupled state and free-streaming scale
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Early Matter Domination (eMD) and
Low Reheating Temperature

• Inflaton oscillation

• Thermal inflation

• Curvaton domination

• Heavy axino and saxion

• Moduli

• .....

The Universe is dominated by heavy particles (early matter domination) 
and reheated (radiation domination) by the decay of them. It happens 
for:
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FIG. 1: The evolution of the energy densities of the scalar
(black), radiation (red) and DM (blue) respectively with re-
spect to the initial total energy density. Blue dashed line is the
equilibrium energy density of WIMP, and green dashed lines
denote the asymptotic behavior of radiation energy density.
DM freezes out at a/ai ' 20 and RD starts from a/ai ' 300.

While radiation is produced directly from the decay of
�, DM can be produced in several di↵erent ways [13]. For
simplicity, we assume that DM is produced only from ra-
diation by scatterings and set fm = 0. Even in this case,
a sizable amount of DM can be produced from thermal

plasma. If the interaction of DM with plasma is large
enough, they could be in thermal equilibrium. WIMP
is one such example, which is intimately coupled to the
relativistic plasma and decoupled when T/M ⇠ 1/20, de-
pending on the annihilation cross section h�avi [14]. The
freeze-out may happen during SD or RD after the scalar
decay. For the latter case, there will be no di↵erence from
the thermal WIMP in the standard scenario. Therefore,
in our study, we will focus on the case that WIMPs are
decoupled during SD.

In Figure 1, we show the evolution of the background
energy densities of �, radiation and DM by solving (2)-
(4). During SD, ⇢r scales as ⇢r / a�3/2 due to the con-
tinuous production from the scalar decay and thus the ef-
fective equation of state during SD is �1/2. DM is frozen
during SD, and its energy density decreases simply pro-
portional to a�3 after then. However the interactions by
collisions continue until RD.

Evolution of perturbations. Now we consider the evo-
lution of perturbations. For this, we use the Newtonian
gauge with the metric

ds2 = �(1 + 2�)dt2 + a2(1� 2 )�ijdx
idxj . (5)

The perturbation equations can be derived from the
Boltzmann equation for each component (↵ = �, r and
m) and they are given by
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where ✓↵ ⌘ r ·v↵ = @iv
i
↵ is the velocity divergence field,

w� = wm = 0 and wr = 1/3. At leading order of T/M ,
the energy-momentum transfer functions Q↵ and �Q↵

are given by
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where we have put fm = 0. In the above equations,
we have included the elastic scattering cross section be-
tween radiation and DM �e which keeps DM and radi-
ation in kinetic equilibrium until they decouple at T

kd

set by ceh�evi⇢r/M |T=Tkd = H(T
kd

), with ce = O(1) be-
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Kinetic decoupling scale
of WIMP

 the smallest scale of 
the structure formation? =

?
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The 00 component of the perturbed Einstein equation
governs the evolution of the metric perturbations,

Δ
a2

Ψ − 3Hð _ΨþHΦÞ ¼ 1

2m2
Pl
ðρϕδϕ þ ρrδr þ ρmδmÞ:

ð17Þ

In the absence of the anisotropic tensor, we can set Φ ¼ Ψ,
which then closes the above set of equations. This is
possible since ϕ and radiation, which dominate the energy
density, are isotropic in our setup. Note that the effects of
the anisotropic shear and nonvanishing sound speed of
DM, cs ∼

ffiffiffiffiffiffiffiffiffiffi
T=M

p
, can be important after kinetic decou-

pling for scales smaller than the free streaming length k−1fr .
In Ref. [16], it is shown that when the free streaming length
is much shorter than the scale k−1kd that enters the horizon at
the moment of kinetic decoupling, we can take an approxi-
mation that solving the Boltzmann equations first in the
perfect fluid limit while maintaining the elastic scattering,
and then multiplying the solution by the Gaussian sup-
pression term. Actually, this limit is also physically
interesting, because two different damping scales can be
more clearly distinguished.
In this Letter, we consider the hierarchies among scales

as k−1fr < k−1reh < k−1kd , where k
−1
reh is the scale that enters the

horizon at T ¼ Treh. This means that the free streaming
scale enters the horizon during SD and that kinetic
decoupling occurs during RD. The large hierarchy between
k−1fr and k−1kd can be obtained when M is big enough while
the elastic scattering is mediated by a field much lighter
than DM. In this case, the freeze-out abundance also could
be large, but the subsequent dilution by entropy injection
from the scalar decay can provide the correct amount of the
present DM density [17,18]. For WIMP, we find [19]

k−1kd ¼ 0.86
10 MeV
Tkd

"
g%s

10.75

#
1=3

"
10.75
g%

#
1=2

pc; ð18Þ

k−1reh ¼ k−1kd
Tkd

Treh
; ð19Þ

k−1fr ¼
Z

t0

tkd

dt
a
cs ≈ k−1kd

ffiffiffiffiffiffiffi
Tkd

M

r
log

"
Tkd

Teq

#
; ð20Þ

where g%s is the effective number of light species for
entropy and Teq ¼ OðeVÞ is the temperature at matter-
radiation equality.
In Fig. 2, we show the evolution of perturbations on three

different scales. During SD, the perturbations are adiabatic
on super-horizon scales since both radiation and DM are
produced from a single source ϕ, which set the initial
values of perturbations as δϕðaiÞ ¼ 2δrðaiÞ ¼ −2Φi and
δmðaiÞ ≈MδrðaiÞ=ð4TiÞ, with Ti being determined from
ρrðaiÞ. During the transition from SD to RD, Φ rescales
from Φi to 10Φi=9 on superhorizon scales and accordingly
δr changes from −Φi to −2ð10=9ÞΦi. Meanwhile, at early
times when DM is in thermal (chemical) equilibrium, δm ∝
a3=8 and is reduced to−5Φi=3 during RDwhich follows the
adiabatic condition δm ¼ 3δr=4.
While for modes which enter the horizon after kinetic

decoupling (k−1kd < k−1), δr oscillates and δm grows loga-
rithmically as shown in the left panel of Fig. 2, for themodes
which enter before kinetic decoupling (k−1reh < k−1 < k−1kd ) δm
oscillates together with δr and is damped, which is known as
collisional damping. The nonvanishing subhorizon entropy
perturbation appears due to the damping of δm as shown in
the middle panel of Fig. 2.
An interesting feature happens for the modes that enter

the horizon during SD but after the free streaming scale
enters (k−1fr < k−1 < k−1reh) as in the right panel of Fig. 2.
During the transition from SD to RD, δm does not follow δr,
and the isocurvature perturbation is generated. In this
period, DM is no longer produced after chemical freeze-
out and the number density is frozen while radiation is still
being produced from ϕ. The continuous entropy injection
becomes the source of the isocurvature perturbation
between DM and radiation. This perturbation still persists
even after kinetic decoupling. Before calculating its ana-
lytic expression we explicitly show why it is not damped
from the solution for δm during RD [16],

FIG. 2 (color online). The evolution of the density contrast of the radiation (red), DM (blue), and the isocurvature perturbation (brown)
with respect to the initial gravitational potential for k−1kd < k−1 (k ¼ 0.1kkd, left), k−1reh < k−1 < k−1kd (k ¼ 5kkd ¼ 0.5kreh, middle), and
k−1fr < k−1 < k−1reh (k ¼ 50kkd ¼ 5kreh ¼ 0.8kfr, right). We have set M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.

PRL 115, 211302 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 NOVEMBER 2015

211302-3

Horizon entry after reheating Horizon entry during early MD
before reheating

reheating

reheating

kinetic 
decoupling

Damping erases the perturbations. Enhancement and No damping.

[KYChoi, Gong, Shin 2015]
1. Creation of Isocurvature Perturbation

kinetic 
decoupling
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super
horizon

reheating

kinetic 
decoupling

damping enhancement 
during eMD
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
BkðtÞ vary in time. Their time dependence is determined by
the elastic scattering term as

_Ak þ ce
hσeviρr
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The values of Δk, ϕk, AkðtrehÞ, and BkðtrehÞ are given at the
onset of RD, and for adiabatic modes they are

Δk ¼ −10Φi; ϕk ¼ 0; AkðtrehÞ ¼ −10Φi;

Bad
k ðtrehÞ ¼ −10Φi

"
γE −

1

2

$
; ð23Þ

where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]

Ak; Bad
k ∝ exp

!
−0.8

"
k

2
ffiffiffi
3

p
kkd

$½ð4þnÞ=ð5þnÞ&%
ð24Þ

for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,

δϕðaÞ ¼ −2Φi −
2

3
Φi

!
k

aiHðaiÞ

%
2 a
ai
; ð25Þ

and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
θr
a
; ð26Þ

_δr ≈ −
4

3

θr
a
þ
Γϕρϕ
ρr

ðδϕ − δrÞ; ð27Þ

where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is

SðtrehÞ ≈ −
3

4

Z
treh

ti
dt

Γϕρϕδϕ
ρr

≈
5

4
Φi

"
k
kreh

$
2

: ð28Þ

As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
"
−

k2

2k2fr

$
5

4
Φi

"
k
kreh

$
2

; ð29Þ

where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.

PRL 115, 211302 (2015) P HY S I CA L R EV I EW LE T T ER S
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Damping and Enhancement of Density Perturbation

Large scale Small scale

[KYChoi, Gong, Shin 2015]

suppressed by
free-streaming
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2. Low-bound on reheating temperature with dark matter
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2. Low bound on Treh with WIMP DM of UCMHs

zc=1000

2

where Φ0 is the primordial gravitational potential and
kreh is that for the mode which enters the horizon at the
time of reheating. The wavenumber k for a mode which
enters the horizon during the eMD is related to the scale
factor a and the Hubble parameter H as

k = kreh

(

a

areh

)−1/2

= kreh

(

H

Hreh

)1/3

, (2)

where areh (a < areh) and Hreh are respectively the scale
factor and the Hubble parameter at the time of reheating
due to the decay of non-relativistic heavy particle. The
scale of reheating kreh has a relation to the reheating
temperature as

kreh = 0.012 pc−1

(

Treh

MeV

)(

10.75

g∗s

)1/3
( g∗
10.75

)1/2
, (3)

where g∗ and g∗s are effective degrees of freedom of rel-
ativistic species and entropy, respectively.
When the scale enters before the beginning of the eMD,

then the linear growth is limited to the epoch of eMD as

δχ ≃ −
2

3
Φ0

(

kdom
kreh

)2

for k > kdom, (4)

where kdom denotes the scale which enters the horizon at
the beginning of the eMD.
For WIMPs, they could be still in kinetic equilib-

rium with relativistic plasma for temperature around be-
tween MeV and GeV and the growth might be prevented
even during early matter domination. However recent
study [19] shows that even in kinetic equilibrium, the
subhorizon isocurvature perturbation can be generated
during the eMD as [19]

δχ ≃
5

4
Φ0

(

k

kreh

)2

, (5)

for the scales which enter the horizon during the eMD.
However the density perturbations at small scales are

suppressed due to the free streaming of dark matter. For
super-WIMP case where DM interacts superweakly such
that they are already kinematically decoupled, the free-
streaming scale can be calculated as [8]
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Mpc,

(6)

where teq is the time at the radiation-matter equality
and ti is some initial time much before eMD. The scale
factor a with subscript NR, dom, reh, and eq represent

kdom/kreh
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FIG. 1: Constraints on Treh and kdom/kreh for WIMP DM
case. The yellow region is disfavored from Fermi-LAT ob-
servation for the case with kfs > 5 × 107 Mpc−1 where the
free-streaming effect is negligible on the scale probed by the
observations. Cases with kfs = 106 and 107 Mpc−1 are also
shown with purple and blue lines, respectively. The orange
regions is disfavoured by BBN and CMB observations.

the time when DM becomes non-relativistic, the begin-
ning of eMD, the reheating epoch and the time of the
radiation-matter equality, respectively. Here we assume
that super-WIMP becomes non-relativistic before eMD
begins2. For WIMP, one can write it as [18]

k−1
fs =

1

2π

∫ teq

tkd

v

a
dt ≃

1

2π

√

Tkd

mχ
a(Tkd)

∫ aeq
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da

a3H(a)

≃ 7.7× 10−8

(

100GeV

mχ

)1/2( MeV

Tkd

)1/2

Mpc,

(7)

where tkd is the time of the kinetic decoupling of WIMP
dark matter with mass mχ, which is assumed to occur
after reheating. Here Tkd is the temperature at tkd and
we put the scale factor at present as unity a0 = 1. DM
fluctuations below this scale (i.e., k > kfs) are suppressed
due to this free-streaming effect, which can be taken into
account by multiplying a factor exp

(

−k2/2k2fs
)

to the
transfer function of δχ.

Bound on the reheating temperature from UCMH.—
The growth of dark matter density fluctuations during
the early matter-domination enhances the formation of
UCMHs after the radiation-matter equality. A large
number of UCMHs can produce various signatures that

2 When the super-WIMP becomes non-relativistic during the
eMD, the mass dependance changes.
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[Smoot’s talk]

After the discovery Higgs boson, the explanation of the 125 GeV Mass implies mul-TeV
spectrum for the susy particles, which is very consistent with the collider constraints.In this
respect, the natural candidate for DM is TeV Higgsino, which is exciting since the direct
detection exp with 1-tonne can probe them. This Higgsino is the robust solution also present
in a broad class of unified SUSY models. TeV Higgsino also can be probed by the indirect
detection which will be discussed by Viel after my talk.

Not only for WIMP, but the freeze-out of strongly interacting massive particle, SIMP, can
give correct abundance if 3 to 2 scattering is important in the early Unvierse. SIMP can help
to solve the small scale problem of CDM and recently the simple realization was introduced
with WZW term.

How about extremely weakly interaction particles? Maybe they cannot be in thermal equi-
librium in the early Universe, though some small amount can be produced. We can understand
the abundance with this figure for a GeV mass with change the cross section. For WIMP, Y is
suppressed. For weaker interaction, the abundance is increasing but still freeze-out with over-
abundance. But for exteremely wimp, they are not in thermal equilibrium and Y is suppreseed
again give correct abundance.

For this EWIMP, there are 2 cases, case one is that most DM is produced at high tempera-
ture, the other is at small temperature. The special example of the second case is called FIMP,
but FIMP is the new mechanism, which was already studied many times in the literatures in
the axino or RH sneutrino already.

Since EWIMP is not in thermal, their number can be neglected in the Boltzmann eq.
RH side, then the equation is easily integrated and the temperature dependance comes through
cross section.When the cross section is temperature independent like gravitino or axion with has
non-renormalizable interation, the final abundance is proportional to the reheating temperature
linearly. Another example is the heavy mediator, in this case sigma is proportional to T
squared, thus the abundance is cubic of reheating temperature. If DM is heavier than reheating
temperature, sigma depends on T to the 6 and the abundance is 7th of reheating temperature.
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cf) BBN+CMB
[Kwasaki, Kohri, Sugiyama, 1999, 2000]
[Salas et al 2015]

UCMH production from the large perturbation
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zc=1000

[KYChoi, Tomo Takahashi, 2017]
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FIG. 2: Projected bound on Treh and kdom/kreh given that
f is constrained as f > 10−6, 10−3, 10−1 at the scale kc = 106

and 107 Mpc−1, which may be obtained from future obser-
vations by gravitational methods such as pulsar timing and
gravitational lensing. Hence this bound can also be applica-
ble to non-WIMP DM. The orange region is disfavoured by
BBN and CMB observations.

can be detectable by gamma-ray and cosmic ray for
WIMPs or by gravitational interactions in astrophysical
observations, from which one can constrain the fraction
of UCMHs in the total matter

f ≡
ΩUCMH

Ωm
, (8)

where Ωm and ΩUCMH are the mass density of UCMH
and matter in units of the critical density of the Universe.
For WIMP dark matter, the Fermi-LAT can put

bounds on f for scales from k ≃ 10 Mpc−1 to k ≃
107 Mpc−1 which reaches as lowest as f > 4 × 10−7

at k ∼ 103 Mpc−1 for the annihilation cross section of
⟨σv⟩ = 3× 10−26 cm3 s−1 of WIMPs into bb̄ pairs [26].
One could also probe the abundance of UCMHs with

gravitational ways such as pulsar timing, microlens-
ing, small-scale distortion of macrolensed images [27–30]
which could constrain f in the future as

f ! 0.1− 0.01, (9)

for the scale around k ∼ 102−106 Mpc−1 [27–30]. These
scales enter horizon around the cosmic temperature be-
low T ≃ 100 MeV in the standard big bang Universe.
This bound can be applied for any kind of dark matter
forming UCMHs since the observations are gravitational.
Here we briefly describe the formalism to constrain the

UCMH abundance and the reheating temperature. For
details, we refer the readers to [26]. Observations can
put bound on the fraction of UCMH mass in our galaxy,
which can be given as

f = β(R)fχ
zeq + 1

zc + 1
, (10)

where fχ = Ωχ/Ωm with Ωχ being the density param-
eter of dark matter and zc is the redshift at which the
structure formation starts and the growth of the mass is
assumed to be halted. The factor (zeq + 1)/(zc + 1) cor-
responds to the growth of the mass by the infall of dark
matter inside UCMH-forming region. β(R) is the proba-
bility of forming UCMHs for the region of comoving size
R, which can be given by

β(R) =
1

√

2πσ2
χ,H(R)

∫ δmax

δmin

exp

[

−
δ2χ

2σ2
χ,H(R)

]

. (11)

Here σ2
χ,H is the DM mass variance at horizon entry,

which is calculated as

σ2
χ,H(R) =

∫ ∞

0
W 2

top−hat(kR)Pχ(k)
dk

k
, (12)

with Wtop−hat(x) = 3(sinx − x cosx)/x3 being the top
hat window function. Here the matter power spectrum
Pχ(k) has a relation to that for the curvature perturba-
tion PR(k) as [26]

Pχ(k) = θ4Tχ(θ)
2PR(k), (13)

with θ = kR/
√
3 and Tχ(θ) is the transfer function for

DM.
The δmin (δmax) is the minimal (maximal) δ of dark

matter for the formation of the UCMHs eventually. The
effect of the growth of DM density fluctuations is ac-
commodated in the δmin. In the standard Universe,
δmin ∼ 10−3 and δmax ∼ 0.3. However due to the growth
during the eMD, in our scenario δmin can be lower. To
determine this, we follow the method in [26] with the
modification to the transfer function in accordance with
the evolution of δχ given in Eqs. (1) and (5). To be con-
servative, we require that the collapse happens before the
redshift zc = 1000.
Since β ∼ exp(−δmin) for small δmin, and δ grows as

δ ∼ k2 during the eMD, β (therefore f in Eq. (10)) is
highly sensitive to the scale k. This means that the for-
mation of UCMHs happens efficiently for a certain scale.
When this scale overlaps with the scales constrained by
observations, the production of UCMHs is easily con-
strained. That is the reason of the sharp boundary at
kdom/kreh ∼ 5 in Figs. 1 and 2.

Case for WIMP dark matter.— For the reheating
temperature around GeV or below, the usual WIMP
of 100 GeV mass is already chemically decoupled but
they continue to be in the kinetic equilibrium until MeV.
In this case, even in the kinetic equilibrium, the large
isocurvature perturbation can be generated as in Eq. (5)
and lead to the formation of UCMHs [19]. However the
free-streaming of WIMP also erases the enhanced den-
sity perturbation and the formation of UCMHs on the
scales smaller than kfs. From Eq. (7), the free-streaming
scale of WIMP with mass 100GeV and Tkd = 1MeV is
kfs ≃ 1.3× 107 Mpc−1.

Future Low bound on Treh with non-WIMP DM

Future gravitational 
observations: 

lensing, pulsar timing

One thing note is that the phase space distribution for type 2 can be di↵erent from Fermi-
Dirac, actually it is colder. This figure show the production of EWIMP via 2bosy decay 3 body,
scattering of s- and t-channel. They a↵ect the matter power spectrum and needs special care
for WDM.

Thermal production means DM is produced from the thermal particles, but there are non-
thermal production. The simple one is by decay of heavy decoupled particle X, and thus the
abundance is the same order of X. But if re-annihilation can happen again, the abundance
depends on the ann cross section and the temperature of decay. If the DM is complex and have
asymmetry, the the freeze-out can happen earlier when the anti-particle is exhausted, which is
similar to baryon. We call this as asymmetric DM. When the asymmetry of DM and baryon
are connected, the DM maybe 5 GeV has many attraction.

Another case of non-thermal production is the bosonic coherent motion with oscillating
scalar field. Since the oscillating field with quadratic potential has negligible pressure, it can be
a good candidate for dark matter. Recently this pressureless behavior was shown in the fully
non-linear order. BCM includes axino, fuzzy CDM or axion like particles.

There are more and more ways of non-thermal production but sorry that I cannot include
them.

For remaining time, I want to talk about the interesting features of DM with early matter
domination. Early MD can happen before RD. After inflation, the oscillating inflaton period,
or curvaton domination, to by heavy axino or saxion or moduli... When DM decouples during
eMD, it show some di↵erent features.

We know that the kinetic decoupling scale gives the smallest scale for the structure forma-
tion, since the damping occurs for the smaller scales during the kinetic decoupling.

GIMP, PIDM,
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at the scale of 

After the discovery Higgs boson, the explanation of the 125 GeV Mass implies mul-TeV
spectrum for the susy particles, which is very consistent with the collider constraints.In this
respect, the natural candidate for DM is TeV Higgsino, which is exciting since the direct
detection exp with 1-tonne can probe them. This Higgsino is the robust solution also present
in a broad class of unified SUSY models. TeV Higgsino also can be probed by the indirect
detection which will be discussed by Viel after my talk.

Not only for WIMP, but the freeze-out of strongly interacting massive particle, SIMP, can
give correct abundance if 3 to 2 scattering is important in the early Unvierse. SIMP can help
to solve the small scale problem of CDM and recently the simple realization was introduced
with WZW term.

How about extremely weakly interaction particles? Maybe they cannot be in thermal equi-
librium in the early Universe, though some small amount can be produced. We can understand
the abundance with this figure for a GeV mass with change the cross section. For WIMP, Y is
suppressed. For weaker interaction, the abundance is increasing but still freeze-out with over-
abundance. But for exteremely wimp, they are not in thermal equilibrium and Y is suppreseed
again give correct abundance.

For this EWIMP, there are 2 cases, case one is that most DM is produced at high tempera-
ture, the other is at small temperature. The special example of the second case is called FIMP,
but FIMP is the new mechanism, which was already studied many times in the literatures in
the axino or RH sneutrino already.

Since EWIMP is not in thermal, their number can be neglected in the Boltzmann eq.
RH side, then the equation is easily integrated and the temperature dependance comes through
cross section.When the cross section is temperature independent like gravitino or axion with has
non-renormalizable interation, the final abundance is proportional to the reheating temperature
linearly. Another example is the heavy mediator, in this case sigma is proportional to T
squared, thus the abundance is cubic of reheating temperature. If DM is heavier than reheating
temperature, sigma depends on T to the 6 and the abundance is 7th of reheating temperature.
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3. The decoupled non-relativistic particle 

3

where mpl = G−1/2 is the Planck mass and
g∗(T ) = ρR(T )/[(π2/30)T 4] is the number of relativistic
degrees of freedom. It is also convenient to define aRH as
the value of the scale factor when Γφ = Hi(ai/a)3/2,

aRH

ai
≡

(

Hi

Γφ

)2/3

. (5)

Since the transition from scalar domination to radiation
domination is not instantaneous, these definitions of TRH

and aRH do not imply that T (aRH) = TRH. On the con-
trary, numerically solving the equations that govern the
evolution of the scalar and radiation energy densities re-
veals that T (aRH) ≃ 0.74TRH.
The kinetic decoupling of DM is governed by the elastic

collision rate Γ = ⟨σv⟩nrel between DM and relativistic
particles with number density nrel. In most WIMP mod-
els, the p -wave (n = 2) scattering channel dominates [9],
but we maintain arbitrary n for generality. Relative to
the elastic collision rate, the momentum-transfer rate, γ,
is suppressed by a factor of (T/mχ), wheremχ is the mass
of the DM particle: γ ≃ (T/mχ)Γ. The suppression fac-
tor (T/mχ) encodes the fact that it takes (mχ/T ) ≫ 1
elastic scatterings to appreciably alter the DM particle’s
momentum [1]. Thus, the momentum-transfer rate is
given by

γ = γi

(

T

Ti

)4+n

= γi

(

ai
a

)α(4+n)

, (6)

where γi = γ(Ti). Lastly, since Tneq is defined by Eq. (1),
we denote the equilibrium regime by (γ/H) ≫ 1 and
the postequilibrium regime by (γ/H) ≪ 1. The equilib-
rium regime describes the period in which Tχ(a) ≃ T (a)
and the postequilibrium regime includes all phases during
which Tχ(a) diverges from T (a).

III. THE POSTEQUILIBRIUM BEHAVIOR OF
THE DM TEMPERATURE

Using a Fokker-Planck equation for the DM particle
occupation number fχ with the approximation 1±fχ ≈ 1,
it can be shown that Tχ satisfies the differential equation
[2, 9]

a
dTχ

da
+ 2Tχ(a)

[

1 +
γ(a)

H(a)

]

= 2
γ(a)

H(a)
T (a). (7)

In the postequilibrium regime, (γ/H) ≪ 1, so if we drop
the (γ/H) term on the lhs of Eq. (7) and assume that
(

γ/H
)

T ≪ Tχ, then Tχ ∝ a−2, and DM fully kinetically
decouples from the plasma. However, the assumption
that

(

γ/H
)

T ≪ Tχ is not always valid, even in regimes
where (γ/H) ≪ 1. To demonstrate this point, we solve
Eq. (7) in the postequilibrium limit

a
dTPE

χ

da
+ 2TPE

χ (a) ≃ 2
γ(a)

H(a)
T (a). (8)

We can rewrite T (a) and (γ/H), respectively, as

T (a) = Tneq

(

aneq/a
)α

and (γ/H) =
(

aneq/a
)αβ

, where
aneq is the value of the scale factor when T = Tneq and
β ≡ (4+n−ν). We restrict to the case β > 0 to guarantee
that (γ/H) monotonically decreases with time.
If we perform the variable transformations

g(a) ≡ (a/aneq)2 TPE
χ (a) and y ≡ (a/aneq), then we

obtain (dg/dy) = 2Tneq y[1−α(β+1)], which integrates to

TPE
χ ≃ C

(

aneq
a

)2

+
2Tneq

2− α(β + 1)

(

aneq
a

)α(β+1)

, (9)

where C is a constant of integration. If α(β + 1) > 2,
then Eq. (9) shows that the C (aneq/a)2 term dominates
over the second term in the postequilibrium regime, such
that TPE

χ ≃ C(aneq/a)2. In other words, DM fully kinet-
ically decouples from the plasma, which also follows from
Eq. (8) if we neglect the (γ/H)T term.
The second term in Eq. (9) is proportional to (γ/H)T .

If α(β+1) < 2, then the second term in Eq. (9) dominates
in the postequilibrium regime, such that TPE

χ ∼ (γ/H)T ,
and (γ/H)T in Eq. (8) cannot be approximated as 0. Un-
der these conditions, TPE

χ falls off faster than the plasma
temperature, but slower than a−2, which implies that
DM never fully kinetically decouples from the plasma.
Instead, DM enters a quasidecoupled state, which repre-
sents a surprising new behavior, because all prior analy-
ses of kinetic decoupling in nonstandard cosmologies as-
sume that DM is fully decoupled from the plasma when
T < Tneq.
Table I shows how the DM temperature evolves in

several cosmological scenarios. An EMDE is the only
cosmology listed that permits quasidecoupling. In an
EMDE, α(β + 1) = (3/8) (1 + n) is less than 2 for n ≤ 4.
Equation (9) then demands TPE

χ ∝ a−(3/8) (1+n), which
forces TPE

χ to decrease faster than the plasma temper-

ature (T ∝ a−3/8) but slower than Tχ ∝ a−2. Fig-
ure 1 illustrates the quasidecoupled behavior of DM in
an EMDE for p -wave scattering; this plot of Tχ is ob-
tained from the numerical solution to Eq. (7). The mo-
ment when γ = H and the onset of radiation domination
(reheating) are labeled in Fig. 1, we see that the equi-
librium regime (γ ≫ H) describes the era during which
Tχ(a) ≃ T (a) ∝ a−3/8, while the postequilibrium regime
includes the quasidecoupled phase, where Tχ(a) ∝ a−9/8,
and the fully decoupled phase, where Tχ(a) ∝ a−2.
While Eq. (9) highlights the sensitivity of a

quasidecoupled state to the size of α(β + 1) relative to
2, Table I suggests a deeper explanation for quasidecou-
pling. In all thermal histories listed where entropy is
conserved, such that T ∝ a−1, quasidecoupling is not
permitted for n > 0. Is quasidecoupling possible in ther-
mal histories for which entropy is conserved and is an
EMDE the only entropy-producing scenario that allows
quasidecoupling? To answer these questions, we recast
our treatment in terms of the parameter w ≡ P/ρ,
which we assume to be constant. First, we fix T ∝ a−1

3

where mpl = G−1/2 is the Planck mass and
g∗(T ) = ρR(T )/[(π2/30)T 4] is the number of relativistic
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ically decouples from the plasma, which also follows from
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χ ∼ (γ/H)T ,
and (γ/H)T in Eq. (8) cannot be approximated as 0. Un-
der these conditions, TPE

χ falls off faster than the plasma
temperature, but slower than a−2, which implies that
DM never fully kinetically decouples from the plasma.
Instead, DM enters a quasidecoupled state, which repre-
sents a surprising new behavior, because all prior analy-
ses of kinetic decoupling in nonstandard cosmologies as-
sume that DM is fully decoupled from the plasma when
T < Tneq.
Table I shows how the DM temperature evolves in

several cosmological scenarios. An EMDE is the only
cosmology listed that permits quasidecoupling. In an
EMDE, α(β + 1) = (3/8) (1 + n) is less than 2 for n ≤ 4.
Equation (9) then demands TPE

χ ∝ a−(3/8) (1+n), which
forces TPE

χ to decrease faster than the plasma temper-

ature (T ∝ a−3/8) but slower than Tχ ∝ a−2. Fig-
ure 1 illustrates the quasidecoupled behavior of DM in
an EMDE for p -wave scattering; this plot of Tχ is ob-
tained from the numerical solution to Eq. (7). The mo-
ment when γ = H and the onset of radiation domination
(reheating) are labeled in Fig. 1, we see that the equi-
librium regime (γ ≫ H) describes the era during which
Tχ(a) ≃ T (a) ∝ a−3/8, while the postequilibrium regime
includes the quasidecoupled phase, where Tχ(a) ∝ a−9/8,
and the fully decoupled phase, where Tχ(a) ∝ a−2.
While Eq. (9) highlights the sensitivity of a

quasidecoupled state to the size of α(β + 1) relative to
2, Table I suggests a deeper explanation for quasidecou-
pling. In all thermal histories listed where entropy is
conserved, such that T ∝ a−1, quasidecoupling is not
permitted for n > 0. Is quasidecoupling possible in ther-
mal histories for which entropy is conserved and is an
EMDE the only entropy-producing scenario that allows
quasidecoupling? To answer these questions, we recast
our treatment in terms of the parameter w ≡ P/ρ,
which we assume to be constant. First, we fix T ∝ a−1

at lower temperature?
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3. Quasi-decoupled state during eMD

During eMD, DM is not fully 
decoupled. Instead it enters in the 
quasi-decoupled state, which 
temperature is between the fully 
decoupled and plasma state.

[Waldstein, Erickcek, Ilie, 2016]

4

Thermal History α(β + 1)
(

γ/H
)

T TPE
χ ∼ Quasidecoupling?

Λ dom. (T ∝ a−1,H ∝ T 0, w = −1) 5 + n Tneq

(

aneq/a
)(5+n)

C (aneq/a)
2 No

Matter dom. (T ∝ a−1,H ∝ T 3/2, w = 0) (7/2) + n Tneq

(

aneq/a
)[(7/2)+n] C (aneq/a)

2 No

RD (T ∝ a−1,H ∝ T 2, w = 1/3) 3 + n Tneq

(

aneq/a
)(3+n)

C (aneq/a)2 No

Kination (T ∝ a−1,H ∝ T 3, w = 1) 2 + n Tneq

(

aneq/a
)(2+n)

C (aneq/a)
2 No

EMDE (T ∝ a−3/8,H ∝ T 4, w = 0) (3/8) (1 + n) Tneq

(

aneq/a
)[(3/8) (1+n)]

Tneq

(

aneq/a
)[(3/8) (1+n)]

Yes

TABLE I: The impact of the cosmology and scattering process on the postequilibrium behavior of DM temperature TPE
χ in

various thermal histories. The equation of state parameter w ≡

(

P/ρ
)

is defined in terms of the pressure, P , and energy density
ρ of the dominant energy component. The abbreviations Λ dom. and matter dom. denote cosmological constant-dominated
and matter-dominated scenarios, respectively.
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FIG. 1: The evolution of the DM temperature Tχ (solid curve)
and plasma temperature T (dashed curve) vs a for p -wave
(n = 2) scattering in an EMDE with TRH = 5 GeV. The
EMDE ends and the Universe becomes radiation dominated
when a ≃ aRH: in this figure, aRH = 106. The momentum-
transfer rate γ equals H when T = Tneq = 126.5 GeV, which
corresponds to a DM particle that would have Tneq = 20 GeV
in a radiation-dominated universe (i.e. TkdS = 20 GeV).
Equation (2) gives Tkd = 15.1 GeV. In the quasidecoupled
regime, Tχ decays faster than the plasma temperature, but
slower than a−2.

and use ρ ∝ a−3(1+w) to find w = (2/3) ν − 1. Our
quasidecoupling condition, α(β + 1) < 2, then implies
that w > 1 + (2/3)n. Thus, quasidecoupling is not pos-
sible if entropy is conserved and n ≥ 0 unless w > 1
(which does not necessarily violate causality [38–40]).
In cases of entropy production, we look beyond an

EMDE by searching for a condition on w that permits
quasidecoupling. If the Universe is dominated by a scalar
field with energy density ρφ that decays into relativistic
particles with energy density ρR, then

aH
d

da
ρR + 4H ρR = Γφ ρφ. (10)

Equation (10) implies that ρR ∝ √
ρφ while ρφ ≫ ρR,

which fixes ν = 4 and α = (3/8) (1 + w). Applying
α(β + 1) < 2 yields w < 16/[3 (1 + n)]− 1. Therefore,
any w < 5/3 allows quasidecoupling for n = 1 (s -wave)
scattering. For p -wave scattering, quasidecoupling is
permitted for all w < 7/9. Table I shows that a stan-
dard kination scenario does not permit quasidecoupling,
but a decaying kination scenario (ν = 4, w = 1) would
support quasidecoupling if the s -wave channel dominates
the elastic scattering cross section.
We now verify that the general solution to Eq. (7) is

consistent with TPE
χ in Eq. (9). The general solution to

Eq. (7) with Tχ(ai) = T (ai) is [4]

Tχ(a) = T (a) sλ es Γ(1− λ, s), (11)

where s(a) = [2/(αβ)](aneq/a)αβ is the decoupling pa-
rameter for β > 0, λ ≡ (2 − α)/(αβ), and Γ(p, s)
is the upper incomplete gamma function defined by
Γ(p, s) =

∫

∞

s dt tp−1 e−t for all p and all s ≥ 0. Refer-
ence [4] obtained Eq. (11), but failed to notice that Tχ

does not scale as a−2, i.e. that DM does not fully de-
couple, when (γ/H) ≪ 1 in an EMDE. However, we can
coax the quasidecoupled behavior from Eq. (11) by not-
ing that Γ(1−λ, s) obeys the asymptotic series expansion
(see the appendix)

Γ(1− λ, s) = Γ(1− λ)−
s1−λ

1− λ
+O(s2−λ), (12)

where Γ(p) = Γ(p, 0) =
∫

∞

0 dt tp−1 e−t for p > 0 and
Γ(p) = (1/p)Γ(p + 1) for p < 0. Equation (12) shows
that Γ(1 − λ, s) approaches a constant value as s → 0
if (1 − λ) > 0, which is consistent with the RD scenario
for all n > 0. However, Γ(1 − λ, s) diverges as s → 0
if (1 − λ) < 0, which is equivalent to α (β + 1) < 2.
Using es ≃ 1 for small s and substituting Eq. (12) and

s(a) =
[

2/(αβ)
] (

aneq/a
)αβ

into Eq. (11) yields

Tχ ≃

[

(

2

αβ

)λ

Tneq Γ(1− λ)

]

(

aneq
a

)2

(13)

+
2Tneq

2− α(β + 1)

(

aneq
a

)α(β+1)
⎡

⎣1 +O

(

[

aneq
a

]αβ
)

⎤

⎦ ,

5

which is consistent with Eq. (9) for TPE
χ and fixes the

constant of integration, C.
In a RD universe, the values of Tneq and Tkd are nearly

identical. In an EMDE, the value of Tneq is much greater
than the value of Tkd, as demonstrated in Fig. 1. In an
EMDE, Eq. (2) implies that Tneq > Tkd > TRH. More-
over, Tkd does not mark a transition in the evolution of
Tχ. For small values of γ, corresponding to small scatter-
ing cross sections, the quasidecoupled stage is very long
(Tneq ≫ TRH), so treating the DM as fully coupled and
then fully decoupled with a transition point marked by
Tkd is inappropriate.
We can use the numerical solutions to Eq. (7)

to determine the discrepancy between Tneq and
Tkd in an EMDE. These numerical solutions re-
veal that Tχ|T→0 = κ1 Tχ(aRH) (a/aRH)−2, where
κ1 = 1.37, aRH is defined by Eq. (5), and Tχ(a)
is given by Eq. (11).4 During an EMDE,
a/aRH = (2/5)2/3(TRH/T )8/3 [18], which implies that

Tkd = (2/5)4/13 TRH

[

TRH/[κ1 Tχ(aRH)]
]3/13

, where TRH

is defined by Eq. (4). Since Tχ decreases faster than T
while the DM is quasidecoupled, κ1 Tχ(aRH) ≪ TRH,
and therefore Tkd ≫ TRH.
If Tneq/TRH ≫ 1, then we can approximate Tχ(aRH)

using Eq. (13). This approximation allows us to re-
late the value of Tkd to the value of Tneq in a RD uni-
verse, which we refer to as TkdS to maintain consistency
with prior investigations of kinetic decoupling in non-
standard thermal histories. If DM decouples during an
EMDE, then Tneq =

√

5/2 (T 2
kdS/TRH) [12, 18]. During

an EMDE, the second term on the rhs of Eq. (13) is
dominant for a ≫ aneq. It follows that

Tkd

Tneq
= 0.53

(

TRH

TkdS

)14/13

. (14)

For (TRH/TkdS) ≪ 1, (Tkd/Tneq) ≪ 1, which con-
firms the generality of the temperature hierarchy
Tneq > Tkd > TRH shown in Fig. 1. The temperatures
Tneq and Tkd are vastly different in an EMDE with a
sufficiently long quasidecoupled phase.

IV. IMPACT ON THE MATTER POWER
SPECTRUM

The existence of a quasidecoupled phase could affect
the evolution of DM perturbations in two ways. First, the
DM perturbations may remain at least partially coupled

4 Equation (11) and the following expressions in this section
assume that the number of relativistic degrees of freedom,
g∗(T ), is constant. If g∗(T ) changes, then Eq. (11) is
no longer an exact solution to Eq. (7). However, using
s = [2/(αβ)](T/Tneq)4+n(a/aneq)3/2 in Eq. (11) provides an ac-
curate approximate solution, and a value of κ1 can be found for
each value of TRH.

to the perturbations in the relativistic plasma during the
EMDE. The radiation density perturbations grow dur-
ing the EMDE because they are sourced by an increas-
ingly inhomogeneous scalar field, but they do not grow as
quickly as the uncoupled DM perturbations [15–17, 35],
so any residual interactions between the plasma and
the DM particles may suppress the growth of matter
perturbations during the EMDE. Second, the fact that
the DM temperature does not scale as a−2 during the
EMDE implies that the velocities of the DM particles,
vχ, do not scale as a−1, which profoundly affects the
calculation of the comoving DM free-streaming horizon:
λfs =

∫ t0
tneq

(vχ/a)dt, where t0 is the present age of the

Universe. The evolution of the DM and plasma pertur-
bations lies beyond the scope of this article, but we can
estimate the impact of the quasidecoupled phase on λfs

by assuming that vχ ∝
√

Tχ. We restrict our analysis to

p -wave scattering in an EMDE. In this case, Tχ ∝ a−9/8

during the quasidecoupled phase.
To isolate the effect of the EMDE on the postre-

heating velocities of the DM particles, we consider
the velocity at the reheat temperature TRH. We also
use the fact that Tneq ≃ T 2

kdS/TRH for TkdS > TRH

[12, 18]. Since T ∝ a−3/8 during the EMDE,
vχ(TRH) ≃

√

(TkdS/mχ)(TRH/TkdS)5/2. Therefore, the
velocities of the DM particles are suppressed by a factor
of (TRH/TkdS)3/2 if they quasidecouple during an EMDE,
as opposed to if they fully decouple during radiation dom-
ination. While this suppression is not as large as it would
have been if the DM fully decoupled during an EMDE [in
which case the suppression factor is (TRH/TkdS)23/6 [18]],
it does imply that an EMDE still reduces the DM free-
streaming horizon even though the DM particles do not
fully decouple from the plasma.
To quantify the impact of quasidecoupling on the free-

streaming horizon, we compute

λfs =

∫ a0

aneq

da
vχ(a)

a2H(a)
(15)

using a piecewise model for the DM veloc-
ity: vχ ≃

√

Tkd/mχ(akd/a) for a > aRH and

vχ ≃
√

0.8Tχ(aRH)/mχ(aRH/a)9/16 for a < aRH,
where Tχ(aRH) is evaluated using Eq. (11). The factor
of 0.8 in the latter expression accounts for the fact that
the DM temperature obtained by numerically solving
Eq. (7) is 0.8 times the value given by Eq. (11) when
a = aRH. This model overestimates vχ for a ≃ aneq;
to compensate, we start the integration in Eq. (15)
when 0.8Tχ(aRH)(aRH/a)9/8 = T (a), instead of at
a = aneq. In contrast, if we had assumed that Tχ ∝ a−2

while γ ! H , then vχ ≃
√

(Tneq/mχ)(aneq/a) for all
T < Tneq. Figure 2 shows how these two models
predict different free-streaming horizons if DM de-
couples during an EMDE. In this figure, we plot the
ratio λfs/λfs(RD), where λfs(RD) is computed assum-
ing that the Universe is radiation dominated when
DM decouples (at T = TkdS and a = akdS) and that

Change of free-streaming scale
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• Already decoupled : gravitino, axino, RH sneutrino,…

• Freeze-out of equilibrium: HDM, WDM, WIMP,…

Summary

• DM production is connected to the evolution of structures

• Non-thermal production

43

• Dark Matter with the early Matter-Domination

• Isocurvature perturbation of WIMP: no damping during kinetic decoupling

• Low-bound on the reheating temperature: constraints from UCMH

• quasi-decoupled state: free-streaming scale,…

• Particle candidates for dark matter: 
: the simplest and effective candidate for dark matter
 motivated by theory, data, or curiosity

: mass and interactions determine the properties

• heavy particle decay, ADM, BCM, PBH,….
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whereΔk and ϕk are k-dependent constants while AkðtÞ and
BkðtÞ vary in time. Their time dependence is determined by
the elastic scattering term as
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The values of Δk, ϕk, AkðtrehÞ, and BkðtrehÞ are given at the
onset of RD, and for adiabatic modes they are

Δk ¼ −10Φi; ϕk ¼ 0; AkðtrehÞ ¼ −10Φi;

Bad
k ðtrehÞ ¼ −10Φi

"
γE −

1

2
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; ð23Þ

where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]

Ak; Bad
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for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,

δϕðaÞ ¼ −2Φi −
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3
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ai
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and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
θr
a
; ð26Þ

_δr ≈ −
4

3

θr
a
þ
Γϕρϕ
ρr

ðδϕ − δrÞ; ð27Þ

where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is
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As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
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where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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Dark matter and radiation are still kinetically coupled: 
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Radiation is still produced from decay of the dominating scalar,
however dark matter is not produced any more.

The difference in the number density creates the isocurvature 
perturbation between dark matter and radiation.
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onset of RD, and for adiabatic modes they are

Δk ¼ −10Φi; ϕk ¼ 0; AkðtrehÞ ¼ −10Φi;

Bad
k ðtrehÞ ¼ −10Φi

"
γE −

1

2

$
; ð23Þ

where γE ≈ 0.577 is the Euler-Mascheroni constant. Then
on superhorizon scales k ≪ aH we can recover −5Φi=3
during RD. For the modes which enters during RD
(k−1reh < k−1), the solution is [16]

Ak; Bad
k ∝ exp

!
−0.8

"
k

2
ffiffiffi
3

p
kkd

$½ð4þnÞ=ð5þnÞ&%
ð24Þ

for hσevi ∝ T2þn, which clearly shows the damping for
k−1 ≪ k−1kd due to the collision with radiation.
Here it is important to note that in Eq. (22) only _Bk

appears. The additional constant term to the adiabatic one is
not damped away even in the kinetic equilibrium and
decoupling periods. As a result, for k−1 ≪ k−1kd , δm is
dominated by the isocurvature perturbation: Bk ¼ Biso

k þ
Bad
k ≃ Biso

k .
Generation of isocurvature perturbation.—For the

modes that enter the horizon during SD after chemical
decoupling of DM, δϕ grows linearly,

δϕðaÞ ¼ −2Φi −
2

3
Φi

!
k

aiHðaiÞ

%
2 a
ai
; ð25Þ

and then logarithmically during RD. Meanwhile, δr grows
during SD, since radiation is continuously produced from
the decay of ϕ. However, after the transition from SD to
RD, this enhancement is lost and δr oscillates with heavily
suppressed amplitude [1].

During kinetic equilibrium, DM is tightly coupled to
radiation, so that θm ≈ θr. Ignoring the effect of DM
annihilation, the relevant equations for δm and δr are, from
Eq. (6),

_δm ≈ −
θr
a
; ð26Þ

_δr ≈ −
4

3

θr
a
þ
Γϕρϕ
ρr

ðδϕ − δrÞ; ð27Þ

where we have neglected Oð1Þ contribution. From SD to
the transition period, both δr and Φ are subdominant
compared to δϕ, and ρr ≈ 2Γϕρϕ=5H. Then the isocurva-
ture perturbation is

SðtrehÞ ≈ −
3

4

Z
treh

ti
dt

Γϕρϕδϕ
ρr

≈
5

4
Φi

"
k
kreh

$
2

: ð28Þ

As can be read fromEq. (26), unlike δm, δr is sourced by both
θr and δϕ because there is steady production of radiation
from ϕ. The corresponding isocurvature part becomes Biso

k .
While the isocurvature perturbation can avoid the damp-

ing due to the collision, the diffusion by the free streaming
still exists. Considering the damping effect due to free
streaming, as discussed before we may add a Gaussian
suppression factor to δm as

δm ≈ exp
"
−

k2

2k2fr

$
5

4
Φi

"
k
kreh

$
2

; ð29Þ

where the free streaming scale k−1fr is estimated as (19).
Based on these results, it is straightforward to calculate the

FIG. 3 (color online). Density contrast of DM with
M ¼ 5 TeV, Treh ¼ 0.1 GeV, and Tkd ¼ 0.01 GeV.
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1. Creation of Isocurvature Perturbation
After chemical decoupling and before reheating during scalar-
domination:

[KYChoi, Gong, Shin 2015]


