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Black Holes

Black holes are the most extreme objects we see in nature!

Classically we understand them quite well, but quantum mechanically they
are a major obstacle to formulating a satisfactory theory of gravity.
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This tension is often expressed by way of the black hole information
paradox.

Quantum field theory in curve spacetime predicts that black holes
formed from collapse radiate, in a manner which is uncorrelated with
how they were formed. They must therefore evaporate, which seems
to lead to a violation of quantum unitarity. Hawking

Five years ago this paradox was rephrased in a striking new way: the
firewall paradox of Almheiri, Polchinski, Marolf, and Sully. AMPS

The AMPS paradox is quite subtle, with many implicit assumptions, and
unfortunately I cannot yet resolve it for you here.
Thinking about it however has led to many exciting developments in the
last few years: entanglement, the emergence of spacetime, quantum error
correction, chaos, etc.
I can best illustrate some of this by formulating the tension between
quantum mechanics and gravity in a simpler way, which has its own
related paradoxes. These I will be able to resolve in a way that is hopefully
illuminating!
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The basic problem black holes introduce for quantum gravity is that they
prevent us from defining the localized observables that are essential to
quantum field theory.
Say we want to use a network of rods to define the locations of points at
distances of order `p:

L

Not a black hole:

L� rS ∼ GM = `p

(
L

`p

)3 mrod

mp
=⇒ mrod � mp

Rods localized:

`p � ∆x >
1

mrod∆v
� 1

mrod
=⇒ mrod � mp.
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Black Hole Thermodynamics

But if gravity is not going to be a local theory, what is it going to be?
Fortunately for us, general relativity and quantum field theory gives us
some guidance on what might need to change:

Area Theorem: The dynamics of GR imply that horizon area always
increases, reminiscent of second law of thermodynamics.

Hawking Radiation: Quantum field theory in curved spacetime tell
us that black holes radiate at a temperature consistent with the idea
that

S =
A

4G
.

This suggests that in quantum gravity we should think of the number of
degrees of freedom in a spatial region as being subextensive!
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Holography

Inspired by the Bekenstein-Hawking formula, ’t Hooft and Susskind
proposed the holographic principle:

A theory of quantum gravity in d spatial dimensions should really be
formulated as a local theory in a lower number of dimensions.

This may seem crazy, but in fact we now have two explicit examples of
this:

The BFSS model uses matrix quantum mechanics to describe 11
dimensional flat space. Banks/Fischler/Shenker/Susskind

The AdS/CFT correspondence uses conformal field theory in d
dimensions to describe gravity in (at least) d + 1 dimensions. Maldacena

How can this be true!?
In the past few years we have understood much better where this extra
dimension comes from in AdS/CFT, I’ll give a sketch of this in the rest of
the talk. I’ll return to black holes at the end.
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AdS/CFT

AdS/CFT says that quantum gravity in asymptotically AdS space is
equivalent to conformal field theory on the boundary:

t
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)
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)
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This correspondence is a quantum correspondence:

|ψbulk〉 ←→ |ψboundary 〉
H, J, . . .←→ H, J, . . .

limr→∞ r∆φ(r , t,Ω)←→ O(t,Ω).

Vacuum perturbations ←→ low-energy states

Big black holes ←→ high-energy states
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First Puzzle

In quantum field theory, causality is enforced by locality:

[O(X ),O(Y )] = 0 (X − Y )2 > 0.

We can consider this in the bulk as well:

x and X are spacelike-separated in the bulk, so we expect that

[φ(x),O(X )] = 0.

But actually this is impossible in quantum field theory!
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The problem is that in a quantum field theory, any operator that
commutes with all local operators at a fixed time must be trivial.
For example consider a chain of Pauli spins:

The set of products of Pauli operators, eg

Z1X4Y7 . . . ,

gives a basis for all operators, so an operator which commutes with all of
the individual Pauli operators must be proportional to the identity.
This is a basic expression of the local structure of the Hilbert space in a
QFT. But then how can we get an extra dimension to emerge?
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Subregion Duality

To describe the second puzzle, we need to develop the dictionary between
the two sides a bit more:

x

R

A
x

RA

Bulk operators that are not near the boundary can also be represented as
operators in the CFT, via formulas like

φ(x) =

∫
R
dX K (x ;X )O(X ) + . . . .
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This is perhaps more intuitive if we look from above at a single time-slice:

A

The operator φ(x) can be represented using only the “Pauli operators” in
A, but the operator φ(y) cannot.
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Second Puzzle

Now say we split the boundary into three regions:

A B

C

The operator in the center has no representation on A, B, or C , but it
does have a representation either on AB, AC , or BC !
Where is the information?
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Quantum Error Correction

It was understood in the last two years that these puzzles, and the
correspondence more generally, can be understood by re-interpreting
AdS/CFT as a Quantum Error Correcting Code. Almheiri/Dong/Harlow,

Harlow/Pastawski/Preskill/Yoshida (HaPPY!), Hayden/Nezami/Qi/Thomas/Walter/Yang

Quantum error correcting codes were invented to protect quantum
computers from decoherence, the basic idea is to protect a quantum
message by encoding it nonlocally in the entanglement between many
degrees of freedom. Shor, Gottesman

There is a beautiful general theory of quantum error correction we
could study, but we will instead focus on a simple example to
illustrate how it works.
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Three qutrits

Say that I want to send you a “single qutrit” state:

|ψ〉 =
2∑

i=0

Ci |i〉.

If I just send it to you, it might get lost or corrupted. So the idea is to
instead send you three qutrits in the state

|ψ̃〉 =
2∑

i=0

Ci |ĩ〉,

where |ĩ〉 is a basis for a special subspace of the full 27-dimensional Hilbert
space, which is called the code subspace.
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Explicitly, we take Cleve/Gottesman/Lo

|0̃〉 =
1√
3

(|000〉+ |111〉+ |222〉)

|1̃〉 =
1√
3

(|012〉+ |120〉+ |201〉)

|2̃〉 =
1√
3

(|021〉+ |102〉+ |210〉) .

Note that this subspace is symmetric between the three qutrits, and
each state is highly entangled.

This entanglement leads to the interesting property that in any state
in the subspace, the density matrix on any one of the qutrits is
maximally mixed, ie is given by 1

3 (|0〉〈0|+ |1〉〈1|+ |2〉〈2|).

In other words, any single qutrit has no information about the
encoded state |ψ̃〉.
This leads to the remarkable fact that we can completely recover the
quantum state from any two of the qutrits!
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To see this explicitly, we can define a two-qutrit unitary operation U12 that
acts as

|00〉 → |00〉 |11〉 → |01〉 |22〉 → |02〉
|01〉 → |12〉 |12〉 → |10〉 |20〉 → |11〉
|02〉 → |21〉 |10〉 → |22〉 |21〉 → |20〉

.

It is easy to see then that we have

U12|ĩ〉 = |i〉1|χ〉23,

with |χ〉 ≡ 1√
3

(|00〉+ |11〉+ |22〉).

This then gives us
U12|ψ̃〉 = |ψ〉1 ⊗ |χ〉23,

so we can recover the state!

By symmetry there must also exist U13 and U23.
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This is reminiscent of our “ABC” example of the operator in the center,
but there we talked about operators instead of states. We can easily
remedy this.
Say we have a single-qutrit operator O

O|i〉 =
∑
j

(O)ji |j〉.

We can always find a three-qutrit operator Õ that implements this
operator on the code subspace:

Õ|ĩ〉 =
∑
j

(O)ji |j̃〉.

Generically this operator will have nontrival support on all three qutrits,
but using our U12 we can define

O12 ≡ U†
12O1U12,

which acts nontrivially only on the first two but still implements O on the
code subspace.
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Thus by using the entanglement in the code subspace, we can reproduce
the puzzling behavior of subregion duality that we saw earlier:

Three “physical” qutrits are local CFT degrees of freedom on the
boundary

One “logical” qutrit is a field in the center of the bulk

The bulk point is in the subregion wedge of any two of the boundary
points, so its information is well-protected
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We can also make contact with the commutator puzzle:

Consider

〈ψ̃|[Õ,X3]|φ̃〉,

where X3 is some operator on the third qutrit and |φ̃〉, |ψ̃〉 are
arbitrary states in the code subspace.

Since Õ always acts either to the left on a state in the code subspace,
we can replace it by O12. But then the commutator is zero! This
would have worked for X1 or X2 as well, so we see that on the code
subspace Õ commutes with all “local” operators.

It is because we are working only in the code subspace that we are
able to circumvent the algebraic puzzle we discussed before.
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But what about the rest of the states? There is a a 24-dimensional
subspace orthogonal to the code subspace, what about bulk locality in
those states?
This is where gravity comes to the rescue: these states are the microstates
of a black hole that has swallowed our bulk point!

The point is far enough behind the horizon that we no longer need to
account for it.
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We thus come back to our initial discussion: any attempt to probe
the locality of spacetime too precisely does break down due to black
hole formation! The full theory of quantum gravity, given by the CFT
in this case, simply has no notion of locality beyond this point.

This may seem a bit arbitrary, since what is a black hole in this model
anyway? But actually this conclusion can be generalized to the full
AdS/CFT correspondence, where we can see from a general theorem
in quantum error correction that the breakdown of the error
correcting properties of the code parametrically happens in the same
place we expect black hole formation in the bulk.
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One can pursue this much further, using the general theory of error
correcting codes and the physics of the bulk to learn more about what
kind of error correcting code AdS/CFT realizes. But I don’t have
time to discuss that today, so let me just mention two things.

In general, we can understand the emergence of the radial direction as
a measure of how well information is protected:
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One can construct generalizations of the three-qutrit code that have a
volume’s worth of bulk degrees of freedom, and illustrate these lessons in
an exactly-soluble setting using “tensor networks”: HaPPY

We are learning more all the time, and I am excited to see what else will
come!
Thanks!
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