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First detections in 20004

FIG. 2.— Our estimates of the cosmic shear variance from the I-V cross-
correlator are shown as the heavy points. Also shown are results from
vWME+, BRE, WTK+. The error bars on the vWME+ estimates are statisti-
cal only. All others are total error including cosmic variance. The lower panel
again shows the same data multiplied by L to show more clearly the large an-
gular scale results. The dotted lines are the Jain & Seljak (1997) predictions
as in figure 1.

The I-V shear variance estimator is shown with an expanded
vertical scale in figure 2. Also shown are the recently an-
nounced results. The BRE result is shown as presented in
their paper and with total error estimate including cosmic vari-
ance. The vWME+ circular cell average shear are plotted
against L =

√
πθ. The vWME+ error bars are statistical only.

WTK+ presented estimates of the ellipticity correlation func-

tion C1(θ) = ⟨ϵ1(0)ϵ1(θ)⟩. We have converted their C1(θ) to an
equivalent shear variance using formulae from Kaiser (1992)
with ϵ = 2γ and assuming a spectral index n = −1. The lower
panel shows the variance multiplied by averaging box size L.
For a n = −1 spectrum, corresponding to a mass auto-correlation
function ξ(r)∝ 1/r2, this quantity should independent of scale.
At small scales <∼ 10 arcmin there seems to be remarkably

good agreement between the independent estimates. Note that
the measurements were made using three separate observing
facilities. At L = 3′.75 we find ⟨γ2⟩ ≃ 2.5 ≃ 10−4. This about
a factor 4-5 lower than the prediction for a light-traces mass
Ωm = 1 cosmology, and an effective redshift for the background
galaxies zeff = 1 (Kaiser 1992; Jain & Seljak 1997).
At larger scales the shear variance we find falls below that

of WTK+. Their largest scale estimates appear to conflict with
our null result at about the 2-sigma level. Our large-angle re-
sults are also smaller than the Ωm = 0.3, ΩΛ = 0.7 theoretical
model predictions.

5. DISCUSSION

For an effective background galaxy redshift of zeff ≃ 1.0
these measurements probe mass fluctuations in a shell peaked
at z ≃ 0.4. At this redshift the 30′ field size corresponds to a
comoving distance of about 6h−1Mpc, so the cell variances pre-
sented here probe scales in the range 0.4 − 6h−1Mpc. On the
smaller end of this scale we find very good agreement with re-
cently announced estimates from other groups, and also with
canonical cosmological theory predictions. It is hard to defini-
tively rule out the possibility that the small angle measurements
are inflated by systematic errors, but one can safely rule out
theories such as light-traces mass high density models which
predict shear variance a factor ∼ 5 higher than our results.
On larger scales our measurements are extremely precise,

yet we find only a null detection for our largest cells. These
results show that on large scales the rms shear is at most a
fraction of a percent. The apparent discrepancy between these
results and the theoretical predictions is quite interesting, and
suggests a steepening of the mass correlation function at scales
∼ 1− 2h−1Mpc. More data are needed however to definitively
confirm this.
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γ̂(ℓ) =

(
ℓ21 − ℓ22 + 2iℓ1ℓ2

|ℓ|2

)
κ̂(ℓ) = e2iβ κ̂(ℓ) , (12.19)

where β is the polar angle of the vector ℓ; this follows directly from (6.11) and (6.16). Eq. (12.19) implies that

〈
γ̂(ℓ)γ̂∗(ℓ′)

〉
= (2π)2 δD(ℓ − ℓ′)Pκ(ℓ). (12.20)

Hence, the power spectrum of the shear is the same as that of the surface mass density.

12.3.1 Shear correlation functions

Consider a pair of points (i.e., galaxy images); their separation direction ϕ (i.e. the polar angle of the separation
vector θ) is used to define the tangential and cross-component of the shear at these positions for this pair,
γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (7.18). Using these two shear components, one can then define

the correlation functions ⟨γtγt⟩ (θ) and ⟨γ×γ×⟩ (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = ⟨γtγt⟩ (θ) ± ⟨γ×γ×⟩ (θ) , ξ×(θ) = ⟨γtγ×⟩ (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

dℓ ℓ

2π
J0(ℓθ)Pκ(ℓ) ; ξ−(θ) =

∫ ∞

0

dℓ ℓ

2π
J4(ℓθ)Pκ(ℓ) , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average ⟨ϵti ϵtj⟩ over all these

pairs; since ϵi = ϵ(s)i + γ(θi), the expectation value of ⟨ϵti ϵtj⟩ is ⟨γtγt⟩ (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through

〈
|γ̄|2

〉
(θ) =

1

2π

∫
dℓ ℓPκ(ℓ)WTH(ℓθ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 ϵi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (ϵiϵ∗i ) = |γ(θi)|2 +σ2
ϵ . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,

̂〈
|γ̄|2

〉
=

1

N(N − 1)

N∑

i̸=j

ϵi ϵ∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function

Observations -> theory
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
ℓ

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(
ℓ

fK(χ)
,χ

)
. (12.16)
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, as in (7.18). Using these two shear components, one can then define

the correlation functions ⟨γtγt⟩ (θ) and ⟨γ×γ×⟩ (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = ⟨γtγt⟩ (θ) ± ⟨γ×γ×⟩ (θ) , ξ×(θ) = ⟨γtγ×⟩ (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

dℓ ℓ

2π
J0(ℓθ)Pκ(ℓ) ; ξ−(θ) =

∫ ∞

0

dℓ ℓ

2π
J4(ℓθ)Pκ(ℓ) , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average ⟨ϵti ϵtj⟩ over all these

pairs; since ϵi = ϵ(s)i + γ(θi), the expectation value of ⟨ϵti ϵtj⟩ is ⟨γtγt⟩ (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through

〈
|γ̄|2

〉
(θ) =

1

2π

∫
dℓ ℓPκ(ℓ)WTH(ℓθ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 ϵi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (ϵiϵ∗i ) = |γ(θi)|2 +σ2
ϵ . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,

̂〈
|γ̄|2

〉
=

1

N(N − 1)

N∑

i̸=j

ϵi ϵ∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function
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γ̂(ℓ) =

(
ℓ21 − ℓ22 + 2iℓ1ℓ2

|ℓ|2

)
κ̂(ℓ) = e2iβ κ̂(ℓ) , (12.19)

where β is the polar angle of the vector ℓ; this follows directly from (6.11) and (6.16). Eq. (12.19) implies that

〈
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〉
= (2π)2 δD(ℓ − ℓ′)Pκ(ℓ). (12.20)
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
ℓ

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(
ℓ

fK(χ)
,χ

)
. (12.16)
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intrinsic ellipticity as a Gaussian random variable with zero mean
and dispersion σε = 0.38. The latter is calculated as σ2

ε =
∑

i εiε
∗
i ,

where the sum goes over all CFHTLenS galaxies in our redshift
range. Therefore, the covariance between the 184 Clone lines of
sight gives us the total covariance D+M+V. Contrary to the case
of the 2PCFs (previous section), this covariance stems from a pure
ML estimate, and therefore the inverse needs to be de-biased by
the Anderson-Hartlap factor α. With a typical number of angular
scales of p = 10 to 15 the corresponding α is of order 0.9. We
show that our cosmological results are independent of the number
of realisations in Sect. 6.2. Note that for the all derived estimators,
the cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as KiDS5,
DES6, HSC7, Euclid8 (Laureijs et al. 2011) or LSST9, a much
larger suite of simulations will be necessary. The number of re-
alisations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magnifi-
cation. This necessitates on the order of a thousand and more inde-
pendent lines of sight. This number has to be multiplied by many
if a proper treatment of the cosmology-dependence is to be taken
into account. Moreover, a simple up-scaling of smaller simulated
fields to full survey size might not be easy because of the different
area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al.
(2012), which accounts for a potential additive shear bias c and
multiplicative bias m,

εobs = (1 +m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The sec-
ond ellipticity component ε2 shows a signal-to-noise ratio (S/N )
and size-dependent bias which we subtract for each galaxy. This
represents a correction which is on average at the level of 2×10−3.
The multiplicative bias m is modelled as a function of the galaxy
S/N and size r. It is fit simultaneously in 20 bins of S/N and r,
see Miller et al. (2013). We use the best-fitting function m(S/N, r)
and perform the global correction to the shear 2PCFs, see eqs. (19)
and (20) of Miller et al. (2013). Accordingly, we calculate the cali-
bration factor 1+K as the weighted correlation function of 1+m,

1 +K(ϑ) =

∑

ij wiwj(1 +mi)(1 +mj)
∑

ij wiwj
. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this un-
certainty, and show in Sect. 6.2 that the cosmological results remain
unchanged by adding this term to the analysis.

Figure 6 shows the combined and corrected 2PCFs, which are
the weighted averages over the four Wide patches with the number

5 kids.strw.leidenuniv.nl
6 www.darkenergysurvey.org
7 http://www.naoj.org/Projects/HSC/HSCProject.html
8 www.euclid-ec.org
9 http://www.lsst.org/lsst
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Figure 6. The measured shear correlation functions ξ+ (black squares) and
ξ− (blue circles), combined from all four Wide patches. The error bars cor-
respond to the total covariance diagonal. Negative values are shown as thin
points with dotted error bars. The lines are the theoretical prediction using
the WMAP7 best-fitting cosmology and the non-linear model described in
Sect. 4.3. The data points and error bars are listed in Table B1.
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

of pairs as weights. Note that the data points are strongly corre-
lated, in particular ξ+ on scales larger than about 10 arcmin. Cos-
mological results using this data will be presented in Sect. 5. The
correlation signal split up into the contributions from the four Wide
patches is plotted in Fig. 7. There is no apparent outlier field. The
scatter is larger than suggested by the Poisson noise on large scales,
in agreement with the expected cosmic variance.

c⃝ 2009 RAS, MNRAS 000, 1–18

Kilbinger et al. (2013)
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Figure 7. Mean and 68% error bars for the parameter �8 (⌦m/0.3)
↵, for various cosmic shear

observations, plotted as function of their publication date (first arXiv submission). All parameter
values are given in Table 7.1. Di↵erent surveys are distinguished by colour as indicated in the
figure. Data points are shown for second-order statistics (circles), third-order (diamonds), 3D lensing
(pentagons), galaxy-galaxy lensing (+ galaxy clustering; triangle), and CMB (squares).

et al. 2000, Van Waerbeke et al. 2000, Wittman et al. 2000). The observations were taken with

di↵erent cameras and telescopes — the Prime Focus Imaging Camera (PFIC) on the William-Herschel

Telescope (WHT), UH8K and CFH12K on the Canada-France Hawaii Telscope (CFHT), and the

Big Throughput Camera (BTC) on Blanco — and covered sky areas between 0.5 and 1.5 deg2. These

early analyses measured correlations of galaxy ellipticities that were larger than the expected residual

systematics. Limits on ⌦
m

and �
8

could be obtained.

Those exploratory results were very soon followed by other surveys from a wide range of

telescopes, for example CFH12K/CFHT with the Red-sequence Cluster Survey (RCS) and VIRMOS-

DESCART (Van Waerbeke et al. 2001, Van Waerbeke et al. 2002, Hoekstra et al. 2002b, Hoekstra

et al. 2002c, van Waerbeke et al. 2005), FORS1 (FOcal Reducer and Spectrograph)/VLT (Very Large

Telescope; Maoli et al. 2001), the 75-deg2 survey with BTC/Blanco-CTIO (Jarvis et al. 2003, Jarvis

et al. 2006), PFIC/WHT (Massey et al. 2005), ESI (Echelle Spectrograph and Imager)/Keck II

(Bacon et al. 2003), WFI at MPG/ESO 2.2m with the Garching-Bonn Deep Survey (GaBoDS;

Hetterscheidt et al. 2007), and Suprime-Cam/Subaru (Hamana et al. 2003).

Cosmic shear then was measured using MegaCam/CFHT on the Canada-France Hawaii Legacy

Survey (CFHTLS). During five years this large program observed 170 square degrees in five optical

bands. First results from the first data release were published over 22 deg2 of the wide part (Hoekstra

et al. 2006) and the 3 out of the 4 deg2 of the deep part (Semboloni et al. 2005).

Apart from those ground-based observations, cosmic shear was successfully detected with the
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Figure 2. Constraints on the amplitude of fluctuations �8 and
the matter density ⌦m from DES SV cosmic shear (purple filled
contours) compared with constraints from Planck (red filled con-
tours) and CFHTLenS (orange filled, using the correlation func-
tions and covariances presented in Heymans et al. (2013), and the
‘original conservative scale cuts’ described in Section 6.1.1). DES
SV and CFHTLenS are marginalised over the same astrophysical
systematics parameters and DES SV is additionally marginalised
over uncertainties in photometric redshifts and shear calibration.
Planck is marginalised over the 6 parameters of ⇤CDM (the 5 we
vary in our fiducial analysis plus ⌧). The DES SV and CFHTLenS
constraints are marginalised over wide flat priors on ns, ⌦b and
h (see text), assuming a flat universe. For each dataset, we show
contours which encapsulate 68% and 95% of the probability, as is
the case for subsequent contour plots.

The fiducial data vector is the real-space shear–shear
angular correlation function ⇠±(✓) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, ⌦m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <
⌦b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vector
is modified to account for a potential unaccounted multi-
plicative bias ⇠ij ! (1+mi)(1+mj)⇠

ij . We place a separate
Gaussian prior on each of the three mi parameters. Each is

centred on 0 and of width 0.05, as advocated by J15. See
Section 5.1 for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to de-
scribe photometric redshift calibration uncertainties. We al-
low for an independent shift of the estimated photomet-
ric redshift distribution ni(z) in redshift bin i i.e. ni(z) !
ni(z � �zi). We use independent Gaussian priors on each of
the three �zi values of width 0.05 as recommended by Bo15.
See Section 5.2 for more details.
(iii) Intrinsic alignments: We assume an unknown ampli-
tude of the intrinsic alignment signal and marginalise over
this single parameter, assuming the non-linear alignment
model of Bridle & King (2007). See Section 5.3 for more
details of our implementation and tests on the sensitivity of
our results to intrinsic alignment model choice.
(iv) Matter power spectrum: We use halofit (Smith
et al. 2003a), with updates from Takahashi et al. (2012) to
model the non-linear matter power spectrum, and refer to
this prescription simply as ‘halofit’ henceforth. The range
of scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
statistical uncertainties (see Sections 4.2 and 5.4, and Table
2 for the minimum angular scale for each bin combination).
We thus marginalise over 3 + 3 + 1 = 7 nuisance parame-
ters characterising potential biases in the shear calibration,
photometric redshift estimates and intrinsic alignments re-
spectively.

Figure 2 shows our main DES SV cosmological con-
straints in the ⌦m � �8 plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints, we
use the same six redshift bin data vector and covariance as
H13, but apply the conservative cuts to small scales used
as a consistency test in that work (for ⇠+ we exclude an-
gles < 30 for redshift bin combinations involving the lowest
two redshift bins, and for ⇠�, we exclude angles < 300 for
bin combinations involving the lowest four redshift bins, and
angles < 160 for bin combinations involving the highest two
redshift bins). We see that in this plane, our results are mid-
way between the two datasets and are compatible with both.
We discuss this further in Section 6.1.

Using the MCMC chains generated for Figure 2 we find
the best fit power law �8(⌦m/0.3)↵ to describe the degen-
eracy direction in the �8, ⌦m plane (we estimate ↵ using
the covariance of the samples in the chain in log�8 � log⌦m

space). We find ↵ = 0.478 and so use a fiducial value for ↵
of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 ⌘ �8(⌦m/0.3)0.5 = 0.81± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either ⌦m or �8 alone are weaker; we find
⌦m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES
SV constraints instead of a full likelihood analysis - S8 is sensi-
tive to the tails of the probability distribution, and also weakly
depends on the priors used on the other cosmological parameters.
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Figure 5. “DLS-ONLY” constraints on ⌦
m

and �8 for ⇤CDM.
The inner and outer contours represent 68% and 95% confidence
regions, resp. Flat priors are used. For the “regular” prior set-
ting, we marginalize over the 0.6 < h < 0.8, 0.92 < n

s

< 1.02,
and 0.03 < ⌦

b

< 0.06 intervals, which bracket the 3� ranges con-
strained by previous CMB or SNIa+Cepheid studies. The “wide”
prior setting refers to the intervals: 0.4 < h < 1.2, 0.7 < n

s

< 1.2,
and 0 < ⌦

b

< 0.1, which are adopted in the CFHTLenS studies.

2013), WMAP9 (Hinshaw et al. 2013), Planck2015-CMB
(Planck Collaboration et al. 2015a), and Planck2015-SZ
(Planck Collaboration et al. 2015b). The result from
Planck2015-SZ depends on the mass bias prior 1� b and
the external data. We choose the result from the joint
constraint with BAO using the value 1�b = 0.688±0.072
of von der Linden et al. (2014).
An interesting & 2 � tension is present between the

Planck2015-CMB and the CFHTLenS results as also
noted in previous studies (e.g., Planck Collaboration et
al. 2015a; MacCrann et al. 2015). It is worth noting
that the CFHTLenS data have been analyzed in sev-
eral studies with slightly di↵erent techniques (e.g., Fu
et al. 2014; Benjamin et al. 2013; Kilbinger et al.
2013; Heymans et al. 2013), which all provide highly
consistent results. This low-normalization cosmology is
also favored by Mandelbaum et al. (2013), who com-
bine galaxy-galaxy lensing and galaxy clustering signals
from SDSS-DR 7. If this tension between weak-lensing
and CMB studies persists, the discrepancy may be inter-
preted as indicating some incompleteness in our under-
standing (e.g., MacCrann et al. 2015); some may also
regard the di↵erence between Planck2015-CMB and -SZ
results as supporting this low-z vs. high-z tension. In
this light, the DLS result is intriguing because the survey
provides one of the tightest constraints and is indepen-
dent in its design and analysis method. As shown Fig-
ure 6, the �8⌦a

m

constraint from DLS is consistent with
those from both WMAP9 and Planck2015. Therefore,
as far as the DLS result is concerned, it is premature to
argue that new physics is required to resolve this low-z
vs. high-z tension.

5.4. Joint Probes with External Data

We consider both ⇤CDM and wCDM models with and
without the curvature constraint. The flat ⇤CDM model
is our baseline model and is described by the following

Table 2
BAO measurements used in the current joint constraint.

z D
V

(z)/r
s

Survey Reference

0.1 2.98± 0.27 6dFGS Beutler et al. (2011)
0.35 8.88± 0.17 SDSS-DR7 Padmanabhan et al. (2012)
0.57 13.67± 0.22 SDSS-DR9 Anderson et al. (2012)
0.44 10.92± 3.67 WiggleZ Blake et al. (2012)
0.60 13.77± 5.94 WiggleZ Blake et al. (2012)
0.73 16.89± 9.15 WiggleZ Blake et al. (2012)

five parameters: ⌦
m

, �8, ⌦b

, n
s

, and h. The flat wCDM
extension requires one additional parameter w, which
characterizes the equation of state parameter w = p/⇢.
The parameter ⌦⇤ is added when we relax the curvature
constraint ⌦

k

⌘ 1� ⌦
m

� ⌦⇤ ⌘ 0.
For external data, we use BAO, CMB and SNIa data

and provide their details as follows. We combine the
Baryonic Acoustic Oscillation (BAO) results published
by Anderson et al. (2012), Padmanabhan et al. (2012),
Beutler et al. (2011), and Blake et al. (2012). These re-
sults were derived from the 6dFGS (Johns et al. 2004),
SDSS-DR7, SDSS-DR9, and WiggleZ surveys and were
also used by WMAP9 in their joint cosmological param-
eter constraint. Table 2 summarizes their e↵ective red-
shifts and measurements on D

V

(z)/r
s

, where r
s

is the
sound horizon distance, and D

V

(z) is the distance mea-
sure at z defined as:

D
V

(z) =


(1 + z)2D2

A

(z)
cz

H(z)

�1/3
. (22)

In equation 22, D
A

(z) is an angular diameter distance to
the redshift z. We use the covariances between the last
three measurements in Table 2 published in Blake et al.
(2012).
For the cosmic microwave background, we use the

Wilkinson Microwave Anisotropy Map 9-year result
(Hinshaw et al. 2013; hereafter WMAP9)14. WMAP9
update their previous results based on the final 9-year
data with some revised calibrations, improving the av-
erage parameter uncertainty by ⇠10% compared to their
7-year results (Komatsu et al. 2011).
For supernova data, we utilize the Union2.1 cata-

log15 provided by Suzuki et al. (2012). The compila-
tion contains 580 supernovae distance moduli within the
0.015 < z < 1.41 range. The supernova �2 function is
given by

�2
SNIa

=
X

i

[µ
B

(↵,�,M
B

)� µ(z,⌦
m

,⌦⇤, w)]
2

�2
total

, (23)

where the summation is performed over 580 supernovae.
The distance modulus µ

B

is a function of the rest-frame
B-band magnitudem

B

, the universal absolute SNIa mag-
nitude, M

B

, the shape of stretch parameter s, and the
color c:

µ
B

= m
B

�M
B

+ ↵(s� 1)� �c (24)

where the linear response parameters ↵ = 0.1219 and
� = 2.4657 are determined globally by fitting all 580 su-

14 Although we do not directly use the Planck2015-CMB result,
we will present the comparisons of our joint probe results with
those from Planck2015-CMB in §6.4

15 available at http://supernova.lbl.gov/Union
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Figure 6. Marginalized posterior contours in the �8 � ⌦m plane (inner 68% CL, outer 95% CL) from the updated CFHTLenS cosmic shear tomography
measurements with different choices of cosmological priors (purple, grey, green, blue, for Cases I, II, III, IV), defined in Table 1. The Planck contour is
included for comparison in red (where our Planck dataset is defined in Section 2.2). Right: Same as the left panel, except now showing contours in ⌦m against
�8⌦

0.5
m , orthogonal to the �8 � ⌦m degeneracy direction.

surements. As for the statistical goodness of the lensing fits, we
find �2

red = 1.51 for the new measurements, as compared to
�2
red = 1.19 for the old measurements.

The reduction in the ‘goodness of fit’ between the two anal-
yses derives from two changes in the analysis. The first change is
the use of a new suite of N-body simulations to determine the co-
variance matrix. In Heymans et al. (2013), the field-of-view of the
184 simulations used was only 12.84 deg2. In order to gain enough
mock realizations to accurately invert the covariance matrix, they
split the simulations into 3 ⇥ 3 sub-realizations such that each
sub-realization was close in size to the ⇡ 53 arcmins maximum
scale measured for the lensing statistics. Pairs on those scales were
therefore ‘missing’ due to edge effects and as a result the error on
large scales was overestimated. In our analysis, the field-of-view of
the 497 simulations used is 60 deg2 and we can therefore measure
the large-scale simulated covariance accurately. As the CFHTLenS
data is a poorer fit to the model on large scales, the reduction in
errors on large scales results in an increased �2

red.

While our new covariance analysis is certainly an improve-
ment on Heymans et al. (2013), it also does not include super-
sample variance terms (Takada & Hu 2013). These super-sampling
variance errors contribute to all angular scales and are missing from
our calculation as very large-scale modes in the density field are not
simulated in the finite box of the N-body simulations. However,
from the good agreement between the jackknife and simulated er-
rors in Fig. 4, we can conclude that these super-sample terms are
not significant on small scales where the majority of the cosmo-
logical information is accessed. On large scales, including super-
sample terms is likely to improve the goodness of fit of the data, an
analysis that we will pursue in future work.

The second change in our analysis is the use of angular scales
larger than the 50 arcmin limit of Heymans et al. (2013), introduced
owing to the limitation of their simulations. Asgari & Schneider
(2015) have recently presented an optimal E/B mode decomposi-
tion analysis of CFHTLenS using the COSEBIs statistic (Schnei-
der, Eifler & Krause 2010; Asgari & Schneider 2015). This analy-
sis reveals significant B-modes on large angular scales (✓ > 40 ar-
cmins) that do not derive from gravitational lensing, which exhibits

Figure 7. Marginalized posterior contour in the �8 � ⌦m plane (inner
68% CL, outer 95% CL) from the updated CFHTLenS cosmic shear tomog-
raphy measurements (CFHTLenS-J16; in purple), with fiducial cosmolog-
ical priors listed in Table 2. For comparison, including the corresponding
contour using the Heymans et al. (2013) measurements with our fiducial
cosmological priors (CFHTLenS-H13; in blue) and the cosmic microwave
background measurements from Planck (in grey).

a pure E-mode signal. These B-modes are further enhanced when
the data is analyzed in tomographic bins.

Asgari & Schneider (2015) also present a compressed-
COSEBIs analysis, where the COSEBIs are optimally combined to
extract cosmological information. In this compressed analysis the
recovered B-modes are consistent with zero. If we assume that the
systematics that introduce B-modes into the data contribute equally
to the E- and B-modes, we can conclude that these systematics will
impact on the goodness of fit of the E-mode, particularly on large
scales where the B-modes are found to be at their strongest. How-
ever, as the compressed cosmological parameter analysis results in
a zero B-mode, these B-modes are not degenerate with cosmolog-
ical parameters and are therefore fairly benign in the cosmological
analysis that follows, particularly when we allow for uncertainty in
the three astrophysical sources of systematics that we focus on in
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.
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(2016). This conversion does not result in additional cosmo-
logical information over the base ⇠± measurement, however,
if the observed shear field is B-mode free.

Direct power spectrum measurements that are not
based on ⇠± with CFHTLenS were made by Köhlinger et al.
(2016) who present a measurement of the tomographic lens-
ing power spectra using a quadratic estimator, and Kitch-
ing et al. (2014, 2016) present a full 3-D power spectrum
analysis. The benefit of using these direct power spectrum
estimators is a cleaner separation of Fourier modes which
are blended in the ⇠± measurement. Uncertainty in mod-
elling the high-k non-linear power spectrum can therefore
be optimally resolved by directly removing these k-scales
(see for example Kitching et al. 2014; Alsing et al. 2016).
The alternative for real-space estimators is to remove small
✓ scales. The conclusions reached by these alternative and
more conservative analyses however still broadly agree with
those from the base ⇠± statistical analysis (Heymans et al.
2013; Joudaki et al. 2016).

Owing to these literature results we have chosen to limit
this first cosmological analysis of KiDS-450 to the ⇠± statis-
tic, with a series of future papers to investigate alternative
statistics. In Appendix D6 we also present an E/B-mode de-
composition and analysis of KiDS-450 using the ⇠E/B statis-
tic.

4.2 Modelling intrinsic galaxy alignments

The two-point shear correlation function estimator from
Eq. 2 does not measure ⇠± directly but is corrupted by the
following terms:
D
⇠̂±

E
= ⇠± + ⇠II± + ⇠GI

± , (6)

where ⇠II± measures correlations between the intrinsic ellip-
ticities of neighbouring galaxies (known as ‘II’), and ⇠GI

±
measures correlations between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a back-
ground galaxy (known as ‘GI’).

We account for the bias introduced by the presence of
intrinsic galaxy alignments by simultaneously modelling the
cosmological and intrinsic alignment contributions to the ob-
served correlation functions ⇠̂±. We adopt the ‘non-linear lin-
ear’ intrinsic alignment model developed by Hirata & Seljak
(2004); Bridle & King (2007); Joachimi et al. (2011). This
model has been used in many cosmic shear analyses (Kirk
et al. 2010; Heymans et al. 2013; Abbott et al. 2016; Joudaki
et al. 2016) as it provides a reasonable fit to both obser-
vations and simulations of intrinsic galaxy alignments (see
Joachimi et al. 2015, and references therein). In this model,
the non-linear intrinsic alignment II and GI power spectra
are related to the non-linear matter power spectrum as,

PII(k, z) = F 2(z)P�(k, z)

PGI(k, z) = F (z)P�(k, z) ,
(7)

where the redshift and cosmology-dependent modifications
to the power spectrum are given by

F (z) = �AIAC1⇢crit
⌦m

D+(z)

✓
1 + z

1 + z0

◆⌘ ✓
L̄

L0

◆�

. (8)

Here AIA is a free dimensionless amplitude parameter that
multiplies the fixed normalisation constant C1 = 5 ⇥

10�14 h�2M�1
� Mpc3, ⇢crit is the critical density at z = 0,

and D+(z) is the linear growth factor normalised to unity
today. The free parameters ⌘ and � allow for a redshift and
luminosity dependence in the model around arbitrary pivot
values z0 and L0, and L̄ is the weighted average luminosity
of the source sample. The II and GI contributions to the
observed two-point correlation function in Eq. 6 are related
to the II and GI power spectra as

⇠ij± (✓)II,GI =
1
2⇡

Z
d` ` Cij

II,GI(`) J0,4(`✓) , (9)

with

Cij
II (`) =

Z
d�

ni(�)nj(�)
[fK(�)]2

PII

✓
`

fK(�)
, �

◆
, (10)

Cij
GI(`) =

Z
d�

qi(�)nj(�) + ni(�)qj(�)
[fK(�)]2

PGI

✓
`

fK(�)
, �

◆
,

(11)

where the projection takes into account the e↵ective number
of galaxies in redshift bin i, ni(�), and, in the case of GI
correlations, the lensing e�ciency qi(�) (see Eq. 5).

Late-type galaxies make up the majority of the KiDS-
450 source sample, and no significant detection of intrinsic
alignments for this type of galaxy exists. A luminosity de-
pendent alignment signal has, however, been measured in
massive early-type galaxies with � ' 1.2 ± 0.3, with no ev-
idence for redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). We therefore determine the level of luminosity
evolution with redshift for a sample of galaxies similar to
KiDS-450 using the ‘COSMOS2015’ catalogue (Laigle et al.
2016). We select galaxies with 20 < mr < 24 and compute
the mean luminosity in the r-band for two redshift bins,
0.1 < z < 0.45 and 0.45 < z < 0.9. We find the higher red-
shift bin to be only 3% more luminous, on average, than the
lower redshift bin. Any luminosity dependence of the intrin-
sic alignment signal can therefore be safely ignored in this
analysis given the very weak luminosity evolution across the
galaxy sample and the statistical power of the current data.

Joudaki et al. (2016) present cosmological constraints
from CFHTLenS, which has similar statistical power as
KiDS-450, using a range of priors for the model parame-
ters AIA, ⌘, and � from Eq. 8 (see also Abbott et al. 2016
who allow AIA and ⌘ to vary, keeping � = 0). Using the De-
viance Information Criterion (DIC; see Section 7) to quan-
tify the relative performance of di↵erent models, they find
that a flexible two-parameter (AIA, �) or three-parameter
(AIA, �, ⌘) intrinsic alignment model, with or without in-
formative priors, is disfavoured by the data, implying that
the CFHTLenS data are insensitive to any redshift- or
luminosity-dependence in the intrinsic alignment signal.

Taking all this information into account, we fix ⌘ = 0
and � = 0 for our mixed population of early and late-type
galaxies, and set a non-informative prior on the amplitude
of the signal AIA, allowing it to vary between �6 < AIA < 6.

4.3 Modelling the matter power spectrum
including baryon physics

Cosmological parameter constraints are derived from the
comparison of the measured shear correlation function with

MNRAS 000, 1–49 (2016)
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(2016). This conversion does not result in additional cosmo-
logical information over the base ⇠± measurement, however,
if the observed shear field is B-mode free.

Direct power spectrum measurements that are not
based on ⇠± with CFHTLenS were made by Köhlinger et al.
(2016) who present a measurement of the tomographic lens-
ing power spectra using a quadratic estimator, and Kitch-
ing et al. (2014, 2016) present a full 3-D power spectrum
analysis. The benefit of using these direct power spectrum
estimators is a cleaner separation of Fourier modes which
are blended in the ⇠± measurement. Uncertainty in mod-
elling the high-k non-linear power spectrum can therefore
be optimally resolved by directly removing these k-scales
(see for example Kitching et al. 2014; Alsing et al. 2016).
The alternative for real-space estimators is to remove small
✓ scales. The conclusions reached by these alternative and
more conservative analyses however still broadly agree with
those from the base ⇠± statistical analysis (Heymans et al.
2013; Joudaki et al. 2016).

Owing to these literature results we have chosen to limit
this first cosmological analysis of KiDS-450 to the ⇠± statis-
tic, with a series of future papers to investigate alternative
statistics. In Appendix D6 we also present an E/B-mode de-
composition and analysis of KiDS-450 using the ⇠E/B statis-
tic.

4.2 Modelling intrinsic galaxy alignments

The two-point shear correlation function estimator from
Eq. 2 does not measure ⇠± directly but is corrupted by the
following terms:
D
⇠̂±

E
= ⇠± + ⇠II± + ⇠GI

± , (6)

where ⇠II± measures correlations between the intrinsic ellip-
ticities of neighbouring galaxies (known as ‘II’), and ⇠GI

±
measures correlations between the intrinsic ellipticity of a
foreground galaxy and the shear experienced by a back-
ground galaxy (known as ‘GI’).

We account for the bias introduced by the presence of
intrinsic galaxy alignments by simultaneously modelling the
cosmological and intrinsic alignment contributions to the ob-
served correlation functions ⇠̂±. We adopt the ‘non-linear lin-
ear’ intrinsic alignment model developed by Hirata & Seljak
(2004); Bridle & King (2007); Joachimi et al. (2011). This
model has been used in many cosmic shear analyses (Kirk
et al. 2010; Heymans et al. 2013; Abbott et al. 2016; Joudaki
et al. 2016) as it provides a reasonable fit to both obser-
vations and simulations of intrinsic galaxy alignments (see
Joachimi et al. 2015, and references therein). In this model,
the non-linear intrinsic alignment II and GI power spectra
are related to the non-linear matter power spectrum as,

PII(k, z) = F 2(z)P�(k, z)

PGI(k, z) = F (z)P�(k, z) ,
(7)

where the redshift and cosmology-dependent modifications
to the power spectrum are given by

F (z) = �AIAC1⇢crit
⌦m

D+(z)

✓
1 + z

1 + z0

◆⌘ ✓
L̄

L0

◆�

. (8)

Here AIA is a free dimensionless amplitude parameter that
multiplies the fixed normalisation constant C1 = 5 ⇥

10�14 h�2M�1
� Mpc3, ⇢crit is the critical density at z = 0,

and D+(z) is the linear growth factor normalised to unity
today. The free parameters ⌘ and � allow for a redshift and
luminosity dependence in the model around arbitrary pivot
values z0 and L0, and L̄ is the weighted average luminosity
of the source sample. The II and GI contributions to the
observed two-point correlation function in Eq. 6 are related
to the II and GI power spectra as

⇠ij± (✓)II,GI =
1
2⇡

Z
d` ` Cij

II,GI(`) J0,4(`✓) , (9)

with

Cij
II (`) =

Z
d�

ni(�)nj(�)
[fK(�)]2

PII

✓
`

fK(�)
, �

◆
, (10)

Cij
GI(`) =

Z
d�

qi(�)nj(�) + ni(�)qj(�)
[fK(�)]2

PGI

✓
`

fK(�)
, �

◆
,

(11)

where the projection takes into account the e↵ective number
of galaxies in redshift bin i, ni(�), and, in the case of GI
correlations, the lensing e�ciency qi(�) (see Eq. 5).

Late-type galaxies make up the majority of the KiDS-
450 source sample, and no significant detection of intrinsic
alignments for this type of galaxy exists. A luminosity de-
pendent alignment signal has, however, been measured in
massive early-type galaxies with � ' 1.2 ± 0.3, with no ev-
idence for redshift dependence (Joachimi et al. 2011; Singh
et al. 2015). We therefore determine the level of luminosity
evolution with redshift for a sample of galaxies similar to
KiDS-450 using the ‘COSMOS2015’ catalogue (Laigle et al.
2016). We select galaxies with 20 < mr < 24 and compute
the mean luminosity in the r-band for two redshift bins,
0.1 < z < 0.45 and 0.45 < z < 0.9. We find the higher red-
shift bin to be only 3% more luminous, on average, than the
lower redshift bin. Any luminosity dependence of the intrin-
sic alignment signal can therefore be safely ignored in this
analysis given the very weak luminosity evolution across the
galaxy sample and the statistical power of the current data.

Joudaki et al. (2016) present cosmological constraints
from CFHTLenS, which has similar statistical power as
KiDS-450, using a range of priors for the model parame-
ters AIA, ⌘, and � from Eq. 8 (see also Abbott et al. 2016
who allow AIA and ⌘ to vary, keeping � = 0). Using the De-
viance Information Criterion (DIC; see Section 7) to quan-
tify the relative performance of di↵erent models, they find
that a flexible two-parameter (AIA, �) or three-parameter
(AIA, �, ⌘) intrinsic alignment model, with or without in-
formative priors, is disfavoured by the data, implying that
the CFHTLenS data are insensitive to any redshift- or
luminosity-dependence in the intrinsic alignment signal.

Taking all this information into account, we fix ⌘ = 0
and � = 0 for our mixed population of early and late-type
galaxies, and set a non-informative prior on the amplitude
of the signal AIA, allowing it to vary between �6 < AIA < 6.

4.3 Modelling the matter power spectrum
including baryon physics

Cosmological parameter constraints are derived from the
comparison of the measured shear correlation function with
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Baryon feedback

• OWLS hydrodynamical 
simulations. 

• At θ~0.5’ the most 
extreme model yields a 
20% decrease in ξ+. 

• Effect captured by 
amplitude of mass-
concentration relation.
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Figure 3. Top panel: ratio of the correlation function ξ+(θ) for
REF/DMONLY (green), DBLIMFV1618/DMONLY (pink) and
AGN/DMONLY (blue) . The notation binij indicates the correlation
of sources from redshift bin i with sources from redshift bin j. Here, we
show only results from the bins with i = j. Bottom panel: same as the
upper panel but for the correlation function ξ−(θ).

case one can show that the value of Pκ(s) depends mostly on the
density fluctuations with comoving wave numbers ≈ s/fK(wmax)

with fK(wmax) maximising the ratio fK(ws−w)fK(w)
fK(ws)

. In the top
panel of Figure 2, we show, for various source redshifts zs, the re-
lation between the angular wave number s and the wave number
s/fK(wmax) using the adopted WMAP3 cosmology. It shows, for
example, that measuring the power spectrum Pκ(s) at s ∼ 1× 104

of galaxies with redshifts ∼ 0.8, probes density fluctuations at
scales k ∼ 10hMpc−1, where baryon physics is important.

However, one might wonder if the signal at arcminute scales
is statistically important. To examine this, the bottom panel of Fig-
ure 2 shows a typical signal-to-noise ratio of Pκ(s). The signal
has been computed assuming a WMAP3 cosmology. The noise ac-
counts for sampling and statistical noise, assuming a WMAP3 cos-
mology and a survey area A = 20000 deg2, a number density
of galaxies of n = 30 gal/arcmin2 all placed at the same red-
shift zs and with intrinsic ellipticity dispersion σe = 0.33 (see sec-
tion 4 for more details on the noise computation). As one can see,
the signal-to-noise ratio peaks at scales between 2 and 10 arcmin,
where baryon physics is important.

Having established that cosmic shear studies are sensitive to

the scales where baryon physics modifies the power spectrum, we
now want to quantify how various scenarios change the two-point
shear statistics. For that we adopt a source redshift distribution that
is representative of the CFHTLS-Wide (Benjamin et al. 2007) and
a fair approximation for Euclid (Laurejis et al. 2009). We adopt the
following parametrisation:

p(z) =
α

(z + z0)β
, (6)

with α = 0.836, β = 3.425, and z0 = 1.171. We divide the
source galaxies in three tomographic bins with limits [0, 0.6, 1.2,
3.4], which yields six cross-power spectra.

The top panel of Figure 3 shows the value of ξ+(θ) measured
for the various feedback scenarios, normalised by the results for
DMONLY. The effect of baryons is small and limited to very small
scales for the REF scenario. However, for DBLIMFV1618, and in
particular for the AGN model, the difference with the DMONLY
result is large and increases when the redshift of the sources de-
creases. The redshift dependence is the result of two effects. The
first is a geometric one: when the redshift of the sources decreases,
the physical scales probed by the lensing signal become smaller
(see Figure 2). The second reason is the suppression of the ampli-
tude of the power spectrum due to feedback, which becomes larger
at late times (see Figure 1). The bottom panel of Figure 3 shows
the value of ξ−(θ) measured for the various feedback scenarios,
normalised by the results for DMONLY. Notice that the bias for
ξ− is more pronounced out to larger scales. This is because ξ− is
much more sensitive to small-scale structures (i.e. to the shape of
the power spectrum Pκ(s) for large s).

3.2 Effect on cosmological parameter estimation

It is clear from Figure 1 that the change in the power spectrum
is large in the case of the AGN and DBLIMFV1618 scenarios.
The modification is, however, scale-dependent, which may help to
ameliorate the problem, since this cannot be reproduced by vary-
ing cosmological parameters which predominantly affect the over-
all amplitude of the weak lensing power spectrum. In other words,
it might be possible to separate the effects of baryonic feedback, or
at least to identify them: the inferred values for cosmological pa-
rameters from weak lensing statistics are scale-dependent for the
AGN and DBLIMFV1618 scenarios.

We first investigate the effect on the recovered value of σ8, the
rms fluctuation of matter in spheres of size 8h−1Mpc. A compli-
cation to our analysis is the limited accuracy of the prescriptions
for the non-linear power spectrum, be it Peacock & Dodds (1996)
or the halofit approach (Smith et al. 2003) used here. We therefore
cannot predict ξ+,DMONLY(θ, zs) directly, but the procedure out-
lined below is accurate as the predictions should have the correct
scaling as a function of σ8. For the various feedback models we
first define the ratio

R+,hydro(θ, zs) =
ξ+,hydro(θ, zs)

ξ+,DMONLY(θ, zs)
, (7)

as a function of source redshift zs and angular scale θ. Here
ξ+,hydro(θ, zs) is the correlation function measured for REF,
DBLIMFV1618 or AGN, whereas ξ+,DMONLY(θ, zs) is the
DMONLY correlation function. We use the halofit prescription
(Smith et al. 2003) to compute ξ+,halofit(θ, zs;σ8), keeping all

Semboloni et al. (2011)
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KiDS vs. HSC vs. DES
KiDS(+VIKING) HSC DES

Mirror [m] 2.6 8.2 4.0

Focus Cassegrain Prime Prime

FOV [deg2] 1.0 1.8 3.0

Area [deg2] 1350 1400 5000

Filters ugri(+ZYJHKs) grizy griz(y)

Seeing [arcsec] 0.68 0.58 0.94

Source density 
[gal/arcmin2] ~8 ~22 ~5-7

Depth r~24 i~24.5 r~23-24

WL Team >30 >30 >130
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Data vector

• 130 points from shear-shear correlation functions ξ+, ξ-.  

• pick radial ranges to avoid small-scale model systematics and 
large-scale shear systematics Hildebrandt et al. (2017)

16 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration

Figure 5. Tomographic measurements of ⇠+ (upper-left panels) and ⇠� (lower-right panels) from the full KiDS-450 dataset. The
errors shown here correspond to the diagonal of the analytical covariance matrix (Section 5.3). The theoretical model using the best-fit
cosmological parameters from Table E1 is shown (solid) which is composed of a cosmic shear term (GG, dotted), and two intrinsic
alignment terms (GI, dot-dashed, and II, dashed).

ranges from N ⇠ 500–1000. The importance of the choice of
the redshift calibration technique is tested in Section 6.3.

For the primary analysis we use the analytical estimate
of the covariance matrix described in Section 5.3. This yields
the most reliable estimate of large-scale sample variance (in-
cluding super-sample contributions), is free from noise, and
is consistent with the N -body covariance (see Section 5.2) on
small scales. We compare the results from both covariance
matrices in Section 6.4.

The confidence contours of the cosmologically most rel-
evant parameters constrained by this measurement, ⌦m and
�8 (and their combination S8), are displayed in Fig. 6 in com-
parison to confidence contours from CFHTLenS (Joudaki
et al. 2016), DES (TBC, DES2015), pre-Planck CMB mea-
surements (Calabrese et al. 2013), and Planck (Planck Col-
laboration 2015). In Appendix E we present a plot showing
the confidence contours for all combinations of the primary
model parameters as 2D projections (Fig. E1) to highlight

MNRAS 000, 1–46 (2016)



Result

• S8 constraint very similar to CFHTLenS, pre-planck CMB 

• Tension with Planck — 2.7σKiDS in S8     
(2.3σ discrepancy in full parameter space)

σ8√(Ωm/0.3)=0.745±0.039

Hildebrandt et al. (2017)

18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the
present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.
The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see
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For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see
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Extended cosmologies
• Massive neutrinos. 

• Non-zero curvature. 

• Evolving dark energy. 

• Modified gravity. 

• Running spectral index.

Joudaki et al. (2017)
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Figure 10. Left: Marginalized posterior contours in the �
8

� ⌦

m

plane (inner 68% CL, outer 95% CL) in a universe with a time-dependent dark energy
equation of state for KiDS in green and Planck in red. For comparison, dashed contours assume fiducial ⇤CDM. Right: Marginalized posterior contours in the
w

0

�wa plane for KiDS in green, Planck in red, JLA SNe in purple, KiDS+Planck in blue, and KiDS+Planck with informative H
0

prior in grey (from Riess
et al. 2016). The dashed lines denote the ⇤CDM prediction.

direction. The realignment of the CMB contour along the lensing
degeneracy direction was also found for CFHTLenS and WMAP7
in Kilbinger et al. (2013), and the extension of the Planck contour
along the ⌦

m

axis is due to the same geometric degeneracy as in
the case of a nonzero curvature. As a result, the respective KiDS
and Planck S

8

constraints agree at 1� (despite seemingly being
in tension in the w � S

8

plane). Accounting for the full parame-
ter space, we find log I = 0.99, which effectively corresponds to
‘strong concordance’ between the KiDS and Planck datasets. In ad-
dition to removing the tension between these datasets, the Planck
constraint on the Hubble constant is now also wider than in ⇤CDM
(0.66 < h < 1.0 at 95% CL, where the upper bound is hitting
against the prior) and in agreement with the Riess et al. (2016) di-
rect measurement of H

0

.
In the w � S

8

plane, KiDS and Planck are both in agree-
ment with a cosmological constant, while the combined analysis
of KiDS+Planck seems to favor a 2.6� deviation from ⇤CDM
(marginalized constraint of �1.93 < w < �1.06 at 99% CL). As
noted in Ade et al. (2016a), deviations from a cosmological con-
stant seem to be preferred by large values of the Hubble constant
(that are arguably ruled out), and so we also consider a ±5� uni-
form Riess et al. (2016) prior on H

0

. While the KiDS+Planck+H
0

contour tightens and moves towards w = �1, we still find an ap-
proximately 2� deviation from a cosmological constant (marginal-
ized constraint of �1.42 < w < �1.01 at 95% CL). As in other
extended cosmologies, the intrinsic alignment amplitude remains
robustly determined when allowing w to vary, with 95% confidence
levels at �0.50 < A

IA

< 2.9 for KiDS, 0.27 < A
IA

< 3.0 for
KiDS+Planck, and 0.38 < A

IA

< 2.4 for KiDS+Planck+H
0

.
We have shown that the introduction of a constant dark en-

ergy equation of state seems to remove the discordance between
KiDS and Planck, and between local Hubble constant measure-
ments and Planck, while moreover deviating from a cosmologi-
cal constant when these measurements are combined. However,
we also want to know to what extent the constant w model is fa-
vored or disfavored by the data. We find that KiDS and Planck on
their own show no preference for w 6= �1, with �DIC = 2.3
for KiDS and �DIC = �0.20 for Planck (respectively degraded
from ��2

e↵

= 0.074 and ��2

e↵

= �3.1 due to the increased

Bayesian complexity). However, the combination of KiDS+Planck
seems to prefer the constant dark energy equation of state model
with �DIC = �5.4 (with near identical Bayesian complexity to
⇤CDM), while this preference reduces to �DIC = �2.9 when
further considering KiDS+Planck+H

0

(marginally degraded from
��2

e↵

= �3.4). Thus, from the point of model selection, we only
find weak preference in favor of a constant dark energy equation of
state model as compared to standard ⇤CDM.

3.5 Dark energy (w
0

-wa)

Although a constant dark energy equation of state as a free param-
eter constitutes the simplest deviation from a w = �1 model, there
is no strong theoretical motivation to keep the equation of state con-
stant once one has moved away from the cosmological constant
scenario. We therefore also consider a time-dependent parameter-
ization to the equation of state, in the form of a first-order Taylor
expansion with two free parameters:

w(a) = w
0

+ (1 � a)wa, (5)

where a is the cosmic scale factor, w
0

is the dark energy equation
of state at present, and wa = �dw/da|a=1

(which can also be
expressed as wa = �2dw/d ln a|a=1/2; Linder 2003).

In Figure 1, we show the impact of a time dependence of the
equation of state on the shear correlation functions. Since a neg-
ative wa makes the overall equation of state more negative with
time, it has the opposite impact on the matter power spectrum and
lensing kernel (and thereby shear correlation functions) to the case
where w > �1 discussed in Section 3.4. Clearly the benefit of
two degrees of freedom to describe the dark energy is that more
complex behavior of the shear correlation functions is allowed than
when only a constant equation of state is considered, enhancing the
ability of the theoretical model to describe the data. Meanwhile,
the extra degree of freedom from nonzero wa further adds to the
geometric degeneracy of the CMB measurements.

Along with the case where the dark energy equation of state is
constant, HMCODE accurately accounts for the impact of w

0

� wa

models on the nonlinear matter power spectrum, as demonstrated
by the N-body simulations in Mead et al. (2016), covering �1.0 <

c� 2016 RAS, MNRAS 000, 000–000

• Resolves tension between KiDS and Planck. 
• Only extensions that is moderately favoured by the data. 
• 3-σ deviation from a cosmological constant. 
• Resolves tension between Riess et al. (2016) and Planck.

Joudaki et al. (2017)
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Troxel et al. (2017)
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FIG. 1. The footprint of the DES Y1 METACALIBRATION catalog selection used in this work, covering 1321 deg2. The joint REDMAGIC
mask described in Sec. II A is not included. The raw mean number density of objects drawn by SKYMAPPER in HEALPIX cells of Nside

1024 is shown, which is uncorrected for the coverage fraction at subpixel scales. Overlaid are the bounds of the nominal five year DES survey
footprint. The full shape catalog footprint, which includes the ‘Stripe 82’ region, is shown in [54].

This measurement process is unchanged from that used in the
DES SV catalog [61]. The code is described in detail in [65].
Noise, model, and selection biases on the galaxy shapes are
calibrated using a suite of simulations designed to closely re-
flect real data, which are described in [54, 55].

The calibration of IM3SHAPE produces a multiplicative m
and additive ci bias corrections per object, where i is the el-
lipticity component, such that the observed ellipticity (eo) is
related to the true ellipticity (et) as eo

i = (1 + m)et
i + ci. The

multiplicative bias is assumed to be the same for both shear
components. Based on the work described in [54], we assign
a Gaussian prior on the shear calibration of m = 0 ± 0.025,
which is wider than that obtained with METACALIBRATION
due primarily to our estimates of uncertainties related to the
accuracy of reproducing the real survey in our image simula-
tions. The bias corrections m and ci are applied in the same
way as previous cosmic shear studies (e.g., [32]), and thus not
discussed in detail here. We propagate the impact of the shear
calibration m for IM3SHAPE through the two-point estimator
to produce a two-point correction as a function of scale. This
is described further in Sec. IV.

IM3SHAPE was applied only to r band images, yielding a
smaller catalog of 22 million objects, which is reduced to 18
million with the selection for the current analysis. The final
effective number density of the selection used in this analysis
is 2.93 galaxies arcmin�2.

B. Photometric Redshift Estimates

A tomographic cosmic shear measurement requires an as-
signment of each source galaxy to a redshift bin i, and its inter-
pretation requires an accurate estimation of the redshift distri-
bution of galaxies in each redshift bin, ni

(z). The procedures

TABLE I. Effective number density neff (gal arcmin�2) and shape
noise �e (per component) estimates for each tomographic redshift
bin of the METACALIBRATION catalog. We reference ne↵ as defined
in both [67] (C13) and [26] (H12). We include H12 for comparison
to previous results, because many have been characterized with this
definition. These quantities are discussed further in [54].

Bin Extent ne↵ �e

C13 H12 C13 H12
Full 0.20 – 1.30 5.07 5.40 0.27 0.28

1 0.20 – 0.43 1.45 1.50 0.26 0.26
2 0.43 – 0.63 1.43 1.52 0.29 0.30
3 0.63 – 0.90 1.47 1.59 0.26 0.27
4 0.90 – 1.30 0.70 0.79 0.27 0.28

for doing so, and for assigning uncertainties to ni
(z), are de-

scribed fully in [39] and the companion papers [41, 42]. In
this analysis, galaxies in the shape catalogs are assigned to the
four redshift bins listed in Table I by the mean of the photo-z
posterior p(z) estimated from DES griz flux measurements.
The redshift distribution of each bin is constructed by stack-
ing a random sample from the p(z) of each galaxy, weighted
according to WiSi, which is defined in Sec. IV. The photo-z
posteriors used for bin assignment and ni

(z) estimation in the
fiducial analysis are derived using the Bayesian photometric
redshift (BPZ) methodology [66]. Details are given in Sec.
3.1 of [39]. The estimated redshift distributions for META-
CALIBRATION are shown in Fig. 2.

Our adopted model for the redshift distribution assumes
that the true redshift distribution in each bin is related to our
measured distribution such that:

ni
(z) = ni

PZ(z � �zi
), (1)
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FIG. 2. The measured BPZ and resampled COSMOS redshift dis-
tributions for the METACALIBRATION shape catalog, binned by the
means of the photo-z posteriors into the four tomographic ranges in
Table I and marked by the color shading. The normalization of each
bin reflects their relative neff. The BPZ distributions are corrected
by the mean of the redshift bias priors �zi. The contribution of each
galaxy is weighted by WiSi, as defined in Sec. IV. The IM3SHAPE
redshift distributions are similar to those shown for METACALIBRA-
TION. The second bin is clearly most different between the resam-
pled COSMOS estimate and BPZ – we explore this further in Sec.
IX C and show that it does not significantly impact the inferred cos-
mological parameters.

where �z is the difference in the mean redshift of the true
and measured n(z). This is a sufficient description of the
photo-z uncertainty for the current cosmic shear analysis, as
we demonstrate in Sec. IX C. Deviations in the shape of the
n(z) are subdominant to the impact of the mean z, for reason-
able variance in the shape at the level of precision necessary
for the DES Y1 analysis. We derive constraints on �zi for
the estimated redshift distributions by comparison of the mean
redshift in each bin to that from two independent methods:

1. the mean, high-quality photo-z of a sample of galaxies
from the COSMOS2015 catalog [68], matched to re-
semble the source galaxies in griz flux and pre-seeing
size [39]

2. in the lowest three redshift bins, the clustering of source
galaxies with REDMAGIC galaxies at 0.15 < z < 0.85,
for which accurate and precise photometric redshifts
can be derived from DES photometry [40–42]

We will refer to these as the ‘COSMOS’ and ‘WZ’ redshift
validation methods, respectively. Their constraints on �zi are
independent and consistent for the first three bins and of com-
parable uncertainty. We thus combine them to provide a prior

TABLE II. Summary of cosmological, systematic, and astrophysical
parameters used in the fiducial analysis. In the case of flat priors, the
prior is identical to the listed range. Gaussian priors are indicated by
their mean and 1 � width listed in the prior column. In the case of
w, it is fixed to �1 for ⇤CDM and varies over the range given for
wCDM. For mi, the values listed are for METACALIBRATION, which
are inflated from the original 1.3% constraint to preserve the overall
m uncertainty when combining tomographic pairs in the likelihood
analysis.

Parameter Range Prior
Cosmological
As ⇥ 109 0.5 . . . 5.0 Flat
⌦m 0.1 . . . 0.9 Flat
⌦b 0.03 . . . 0.07 Flat
⌦⌫h2 0.0006 . . . 0.01 Flat
H0 (km s�1 Mpc �1) 55 . . . 90 Flat
ns 0.87 . . . 1.07 Flat
w �2.0 . . .�0.333 Fixed/Flat
⌦k 0.0 Fixed
⌧ 0.08 Fixed
Systematic
(m1 – m4)⇥102 �10 . . . 10 1.2 ± 2.3
�z1 ⇥ 102 �10 . . . 10 0.1 ± 1.6
�z2 ⇥ 102 �10 . . . 10 �1.9 ± 1.3
�z3 ⇥ 102 �10 . . . 10 0.9 ± 1.1
�z4 ⇥ 102 �10 . . . 10 �1.8 ± 2.2
Astrophysical
A �5.0 . . . 5.0 Flat
⌘ �5.0 . . . 5.0 Flat
z0 0.62 Fixed

on the systematic parameters �zi at the level of ±0.02 [39].
For METACALIBRATION the �zi are listed in Table II and are
consistent with the original BPZ estimate. The agreement be-
tween these validation methods provides further justification
of our reliance on the accuracy of the COSMOS2015 30-band
photo-zs. The priors for alternate combinations of shear and
photo-z pipelines are given in [39] and require statistically
significant shifts to the redshift distributions in some cases.

One notable complication is the correction of photo-z
induced selection biases in METACALIBRATION. For the
METACALIBRATION catalog, six versions of the BPZ cata-
log are produced. In order to calculate selection biases on
the shear measurement, BPZ redshifts are estimated from
the griz photometry produced during shape fitting in the
four sheared METACALIBRATION catalogs, as well as the un-
sheared catalog—redshifts and bin assignments may change
when fluxes are measured from a sheared image. We use
these to construct the component of the selection bias correc-
tion hRSi due to redshift binning. The redshift distribution
ni

(z) of each bin is reconstructed using BPZ estimates with
Multi-Epoch Multi-Object Fitting (MOF) griz-band photom-
etry (see [52] for details on this technique), which gives a bet-
ter estimate of the shape of the redshift distribution. This is
because: 1) MOF fluxes are superior to those of MAG AUTO
because they properly account for PSF variations between im-

• 1321 deg2 

• half depth 

• 5 gal./arcmin2 
• 4-bin tomography analysis
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FIG. 4. The measured shear correlation function ⇠+ (top triangle) and ⇠� (bottom triangle) for the DES Y1 METACALIBRATION catalog.
Results are scaled by the angular separation (✓) to emphasize features and differences relative to the best-fit model. The correlation functions
are measured in four tomographic bins spanning the redshift ranges listed in Table I, with labels for each bin combination in the upper left
corner of each panel. The assignment of galaxies to tomographic bins is discussed in Sec. II B. Scales which are not used in the fiducial
analysis are shaded (see Sec. VII A). The best-fit ⇤CDM theory line from the full tomographic analysis is also plotted as the solid line. We
find a �2 of 268 for 211 degrees of freedom in the non-shaded regions, which is discussed in Sec. VIII A.

We also test the level of shape noise in the covariance ma-
trix by comparing halo model covariance predictions for ⇠�
on small scales (2.5 < ✓ < 10 arcmin), where shape noise
dominates, to jackknife estimates for both shape catalogs from
the data. We find very good agreement for METACALIBRA-
TION, but there is an indication that in two tomographic bins,
the shape noise of IM3SHAPE may be underestimated by up
to 20%. We believe this is due to an unresolved issue with the
empirically derived weights as a function of redshift. Since we
use IM3SHAPE only to validate that our shape measurement
and calibration is robust, this would only result in a slight in-
flation of the significance of this test in Sec. IX B.

VI. BLINDING

For the DES Y1 analysis, we have maintained a catalog-
level blinding scheme similar to the DES SV analyses, but
rescaling |⌘| = 2 arctanh |e| by a factor between 0.9 and 1.1
(see [92] for a review of blinding in general). This catalog

blinding 16 was preserved until the catalogs and primary DES
Y1 cosmological analyses and papers (this work and [51])
completed a first round of the DES internal review process.
All calculations were then repeated with the unblinded cata-
logs for the final version of this paper.

In addition to this catalog-level blinding, no comparison
to theory at the two-point level (⇠±) or of cosmological con-
tours was made, nor were central values of any cosmological

16 During the internal review process for [54], it was discovered that separate,
but equivalent, oversights in the shear calibration of the two catalogs led
to a substantial fraction (e.g., the linear part in e) of the blinding factor
being calibrated. This was undiscovered until the catalogs were finalized,
and thus had no impact on catalog-level choices. It is valid to question
whether this invalidated our blinding strategy at the parameter estimation
level. It did not, for two reasons: 1) only a few people in the collaboration
were aware of the potential issue until after we unblinded the cosmolog-
ical parameters, minimizing any impact, and 2) The secondary blinding
enforced at the two-point and parameter level ensured that even had we
become aware of this oversight much sooner, it could not have led to ex-
perimenter bias in our analyses.

Troxel et al. (2017)
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C. Modeling Shear Systematics

The shear multiplicative bias is modeled as [131, 132]

⇠ij
= (1 + mi

)(1 + mj
)⇠ij

true

, (11)

where mi are free to independently vary in each tomographic
bin. We do not explicitly marginalize over the potential im-
pact of additive systematics. We use a Gaussian prior on
mi of 0.012 ± 0.023 for METACALIBRATION, given in Ta-
ble II, which is rescaled from the non-tomographic prior
m = 0.012 ± 0.013 due to potential correlations between
tomographic bins as discussed in Appendix D of [54]. The
equivalent IM3SHAPE prior on mi is 0.0 ± 0.035. Both are
allowed to vary independently in each tomographic bin.

The only potential source of additive systematics we have
identified in [54] is related to incorrect modeling of the PSF.
We can model the impact of the PSF model errors in cosmic
shear and this is described in detail in Appendix A along with
a discussion of the residual mean shear in each tomographic
bin, which is not fully described by PSF model errors. We find
that after correcting the signal for the mean shear, the effect
of PSF modeling errors is negligible.

D. Modeling Photo-z Systematics

The photo-z bias is modeled as an additive shift of the n(z)

ni
= ni

PZ

(z � �zi
), (12)

where �zi are free to independently vary in each tomographic
bin. As discussed in Sec. II B, this is a sufficient approx-
imation for the DES Y1 cosmic shear analysis, and this is
further validated in Sec. IX C. The Gaussian priors on �zi

for the METACALIBRATION measurements are listed in Ta-
ble II. We separately calibrate priors for the IM3SHAPE mea-
surements, which have Gaussian priors of �zi

= (0.004 ±
0.015; �0.024 ± 0.013; �0.003 ± 0.011; �0.057 ± 0.022)

[39, 42]. When using the resampled COSMOS ni
(z), the

same width for the prior on �zi is used, but it is centered
at zero. All �zi are allowed to vary independently in each to-
mographic bin. As in the case of shear calibration, the width
of these priors accounts for correlations between tomographic
bins as described in Appendix A of [39].

VIII. COSMOLOGICAL PARAMETER CONSTRAINTS

Given the size and quality of the DES Y1 shape catalogs,
we are able to make a highly significant statement about the
robustness of the standard ⇤CDM cosmological model. Our
measurements of cosmic shear probe the evolution of nonlin-
ear fluctuations in the underlying matter field and expansion
of space across a very large volume around z ⇡ 0.6. By com-
parison, equally constraining measurements of the CMB at
z = 1100 use information from linear perturbations in the ra-
diation field to constrain the same model eight billion years

0.2 0.3 0.4 0.5
�m

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
�

8
DES Y1
KiDS-450
Planck

0.2 0.3 0.4 0.5
�m

0.65

0.70

0.75

0.80

0.85

0.90

S
8
⌘

�
8(

�
m
/0

.3
)0.

5

�CDM

FIG. 7. Fiducial constraints on the clustering amplitude �8 and S8

with the matter density ⌦m in ⇤CDM. The fiducial DES Y1 cosmic
shear constraints are shown by the gray filled contours, with Planck
CMB constraints given by the filled green contours, and cosmic shear
constraints from KiDS-450 by unfilled blue contours. In all cases,
68% and 95% confidence levels are shown.

before light left the galaxies we now observe in DES. Com-
paring the prediction of these very different probes at the same
redshift via the parameter S

8

allows us to test whether these
results are consistent within the ⇤CDM model to high preci-
sion.

Using the fiducial modeling choices described in the pre-

• Most powerful cosmic shear 
measurement to date 

• S8 constraint between Planck  
and KiDS 

• Significant differences in the  
analysis 

• Shows the potential of the full  
Dark Energy Survey
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Combined probes
• Cosmic shear <γγ> 

• Galaxy-galaxy lensing <δγ> 

• Galaxy clustering (photometric or spectroscopic 
samples) <δδ> 

• Break degeneracies 

• Increase precision 

• Lose some of the benefits of cosmic shear
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Figure 10. Constraints on Ωm - σ8 and Ωm - S8 from this work for different combinations of power spectra. Also shown are the fiducial
results for KiDS-450 (H+17; Hildebrandt et al. 2017) and Planck (P+16; Planck Collaboration et al. 2016).

Figure 11. Reduced χ2 values of the best-fitting models, corresponding p-values of the fit, and constraints on the amplitude of the
intrinsic alignment model AIA and effective biases of the two foreground samples, bz1 and bz2, for the different combinations of power
spectra. The lower points show the results of the conservative run, where we excluded the lowest ℓ bin from PE (c1) and the highest ℓ

bin from P gm and P gg (c2) in the fit. The red, vertical dashed line in the second panel indicates a p-value of 0.05, the 2σ discrepancy
line.

constrained in the combined fit, with AIA = 1.30 ± 0.40.
Most of the constraining power on AIA comes from P gm,
as the redshift distributions of the foreground samples
and the shape samples partly overlap; fitting only PE,
AIA = 0.89+0.79

−0.59 and is therefore only inconclusively de-
tected. In an analysis of cosmic shear data from CFHTLenS
combined with WMAP7 results, Heymans et al. (2013) re-
ported AIA = −1.18+0.96

−1.17 . Joudaki et al. (2017) analysed
CFHTLenS data and found AIA = −3.6 ± 1.6, while the
correlation function analysis of KiDS (Hildebrandt et al.
2017) reported AIA = 1.10 ± 0.64. Hence, similar to
Hildebrandt et al. (2017), our results prefer a positive intrin-
sic alignment amplitude, but we detect it with a larger sig-
nificance. The preference for negative values in CFHTLenS

but positive values in KiDS suggests that AIA is not simply
a measure of the amount of intrinsic alignments of galaxies,
but that in fact it accounts for systematic effects that might
differ between surveys. Further evidence for this scenario is
that the amplitude we obtain is larger than what is expected
based on results from previous dedicated intrinsic alignment
studies; although intrinsic alignments have been detected for
luminous red galaxies (e.g. Joachimi et al. 2011; Singh et al.
2015), the constraints for less luminous red galaxies and blue
galaxies are consistent with zero (Mandelbaum et al. 2006;
Hirata et al. 2007; Mandelbaum et al. 2011). We provide ev-
idence that AIA effectively accounts for uncertainty in the
redshift distributions in Sect. 4.3.

The effective biases of the foreground samples are con-

MNRAS 000, 000–000 (2017)

van Uitert et al. (2017)
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Figure 7. Marginalized posterior contours in the �8 – ⌦m plane (inner 68% CL, outer 95% CL) from observations of cosmic shear, galaxy-galaxy lensing, and
redshift-space multipole power spectra for KiDS overlapping with 2dFLenS and BOSS. We show constraints from {⇠+, ⇠�} in green, {⇠+, ⇠�, �t, P0, P2}
in purple, and {⇠+, ⇠�, �t, P0, P2} with conservative data cuts in pink. For comparison, we show the constraints from Planck 2015 in red.

ever, they constrain the galaxy biases more strongly than galaxy-
galaxy lensing (further discussed in Section 5.4). The baryonic
feedback and shot noise parameters are unconstrained within
their prior ranges. For fiducial cuts to the P0/2 measurements,
the 2dFLenS velocity dispersion parameters are bounded from
above, such that {�v,2dFLOZ, �v,2dFHIZ} < {5.6, 5.7} h�1

Mpc.
For BOSS, the bounds are two-sided: {�v,LOWZ, �v,CMASS} =

{3.4+1.4
�0.8, 5.5

+1.1
�0.8} h�1

Mpc. For conservative cuts, the velocity
dispersion parameters are unconstrained within their prior ranges,
with the exception of �v,CMASS < 7.6 h�1

Mpc. Our CMASS
constraints agree with those given for the full survey in Beutler
et al. (2014). The constraints can be converted to units of km s

�1

by multiplying with the Hubble constant, and correspond to veloc-
ities of hundreds of km s

�1 as expected.

5.4 Cosmic shear, galaxy-galaxy lensing, and redshift-space
galaxy clustering {⇠+, ⇠�, �t, P0, P2}

5.4.1 Cosmological constraints

We show the key cosmological parameter constraints in the �8 –
⌦m plane in Fig. 7. Analogous to the {⇠±, P0/2} data combina-
tion, the {high-�8, low-⌦m} end of the underlying cosmic shear
contour is seemingly disfavored (following an improvement on �8

by {60, 40}% and on ⌦m by {50, 10}% for {fiducial, conser-
vative} data cuts10). Perpendicular to the lensing degeneracy di-
rection, there is a minor narrowing of the contours, reflected in
S8 = 0.742+0.035

�0.035 for fiducial data cuts, and S8 = 0.721+0.036
�0.036

with conservative cuts. The {⇠±, �t, P0/2} constraints on S8 are
8-9% stronger than the respective constraints from {⇠±, P0/2},
9-13% stronger than the constraints from {⇠±, �t}, and 19-22%
stronger than the constraint from ⇠±. These improvements are rel-
atively modest due in part to the currently incomplete overlap of
KiDS with 2dFLenS and BOSS, the careful selection of scales
for �t and P0/2, and the large number of nuisance parameters

10 The real impact is larger given the dependence of the ‘cosmic shear
only’ results along the lensing degeneracy direction on the cosmological
priors (Joudaki et al. 2017a).

that are simultaneously varied in the analysis (19 parameters for
{⇠±, �t, P0/2} compared to 7 parameters for cosmic shear alone).

The fully combined fiducial and conservative S8 constraints
are in complete agreement relative to one another, and with the
earlier sub-vector constraints (visualized in Fig 8). However, the
fully combined S8 constraints are discordant with Planck at the
level of 2.6� and 3.0� in the fiducial and conservative cases, re-
spectively. In Appendices A and C, we show that these discor-
dances are largely unaffected by the new Planck HFI measurement
of the reionization optical depth (Aghanim et al. 2016) and by an
extended treatment of the astrophysical systematics. We moreover
evaluated the log I diagnostic, which accounts for the discordance
over the full parameter space. As shown in Table 5, log I = �3.1
for fiducial cuts to the data, which indicates ‘decisive’ discordance
with Planck, and log I = �1.3 with conservative cuts indicating
‘strong’ discordance. Hence, despite the similar level of discor-
dance with Planck as quantified by S8, the discordance between
the probes is larger in the fiducial scenario given the stronger con-
straints on the underlying parameter space (as can be seen in Fig 7).

5.4.2 Shot noise prior dependence

The constraints are subject to an important caveat predominantly
along the lensing degeneracy direction. As discussed in Section 4.3,
our fiducial shot noise prior 0 < Nshot < 2300 h�3

Mpc

3 is mo-
tivated by the analysis of Beutler et al. (2014) for BOSS. While
we expect Nshot on the order of 1000, our data is unable to con-
strain the shot noise on its own, and our results along the lensing
degeneracy direction are sensitive to the choice of prior on this pa-
rameter (to lesser extent when employing conservative data cuts).
Given the anti-correlation between Nshot and ⌦m, a lower bound
on the shot noise prior shifts the constraints along the lensing de-
generacy direction towards larger matter density (and smaller �8),
while a higher upper bound shifts the constraints toward smaller
matter density (and larger �8).

The prior dependence of the cosmological constraints along
the lensing degeneracy direction was illustrated for cosmic shear
alone in Joudaki et al. (2017a). We now further advise caution in the
interpretation of cosmological constraints along the lensing degen-

c� 2017 RAS, MNRAS 000, 000–000

Includes RSD
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datasets simultaneously. The denominator is the evidence for
both datasets when model M is fit to both datasets individu-
ally, and therefore each dataset determines its own parameter
posteriors.

Before the data were unblinded, we decided that we would
combine results from these two sets of two-point functions if
the Bayes factor defined in Eq. (V.3) did not suggest strong
evidence for inconsistency. According to the Jeffreys scale,
our condition to combine is therefore that R > 0.1 (since
R < 0.1 would imply strong evidence for inconsistency). We
find a Bayes factor of R = 2.8, an indication that DES Y1
cosmic shear and galaxy clustering plus galaxy–galaxy lens-
ing are consistent with one another in the context of ⇤CDM.

The DES Y1 data were thus validated as internally con-
sistent and robust to our assumptions before we gained any
knowledge of the cosmological parameter values that they im-
ply. Any comparisons to external data were, of course, made
after the data were unblinded.

VI. DES Y1 RESULTS: PARAMETER CONSTRAINTS

A. ⇤CDM

We first consider the ⇤CDM model with six cosmological
parameters. The DES data are most sensitive to two cosmo-
logical parameters, ⌦m and S

8

as defined in Eq. (IV.5), so for
the most part we focus on constraints on these parameters.
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FIG. 5. ⇤CDM constraints from DES Y1 on ⌦m, �8, and S8

from cosmic shear (green), redMaGiC galaxy clustering plus galaxy–
galaxy lensing (red), and their combination (blue). Here, and in all
such 2D plots below, the two sets of contours depict the 68% and
95% confidence levels.

Given the demonstrated consistency of cosmic shear with

clustering plus galaxy–galaxy lensing in the context of ⇤CDM
as noted above, we proceed to combine the constraints from
all three probes. Figure 5 shows the constraints on ⌦m and
�

8

(bottom panel), and on ⌦m and the less degenerate param-
eter S

8

(top panel). Constraints from cosmic shear, galaxy
clustering + galaxy–galaxy lensing, and their combination are
shown in these two-dimensional subspaces after marginaliz-
ing over the 24 other parameters. The combined results lead
to constraints

⌦m = 0.264+0.032
�0.019

S
8

= 0.783+0.021
�0.025

�
8

= 0.807+0.062
�0.041. (VI.1)

The value of ⌦m is slightly lower than that inferred from
either cosmic shear or clustering plus galaxy–galaxy lensing
separately. In general, when projecting down onto a small
subspace, this can occur. In this particular case, we get a
glimpse of why by noting from the bottom panel of Figure 5
that the degeneracy directions of shear differ slightly in the
⌦m � �

8

plane from w(✓) + �t(✓), with the two converging
on lower values of ⌦m. We present the resulting marginalized
constraints on the cosmological parameters in the top rows of
Table II.

The results shown in Figure 5, along with previous anal-
yses such as that using KiDS + GAMA data [62], are an
important step forward in the capability of combined probes
from optical surveys to constrain cosmological parameters.
These combined constraints transform what has, for the past
decade, been a one-dimensional constraint on S

8

(which ap-
pears banana-shaped in the ⌦m � �

8

plane) into tight con-
straints on both of these important cosmological parameters.
Figure 6 shows the DES Y1 constraints on S

8

and ⌦m along
with some previous results and in combination with exter-
nal data sets, as will be discussed below. The sizes of these
parameter error bars from the combined DES Y1 probes are
comparable to those from the cosmic microwave background
(CMB) obtained by Planck.

In addition to the cosmological parameters, these probes
constrain important astrophysical parameters. The intrinsic
alignment (IA) signal is modeled to scale as A

IA

(1 + z)⌘IA ;
while the data do not constrain the power law well (⌘

IA

=
�0.0+1.7

�2.8), they are sensitive to the amplitude of the signal:

A
IA

= 0.50+0.32
�0.38 (95% CL). (VI.2)

Further strengthening evidence from the recent combined
probes analysis of KiDS [62, 63], this result is the strongest
evidence to date of IA in a broadly inclusive galaxy sam-
ple; previously, significant IA measurements have come from
selections of massive elliptical galaxies, usually with spec-
troscopic redshifts (e.g. [129]). The ability of DES data to
produce such a result without spectroscopic redshifts demon-
strates the power of this combined analysis and emphasizes
the importance of modeling IA in the pursuit of accurate cos-
mology from weak lensing. We are able to rule out A

IA

= 0
at 99.36% CL with DES alone and at 99.89% CL with the full
combination of DES and external data sets. The mean value
of A

IA

is nearly the same when combining with external data

3% error on S8



S8 results over the years
Kilbinger (2015; updated)



VIKING@VISTA
• Same footprint as KiDS. 

• Already finished (1350deg2). 

• ZYJHKs images. 

• 5σ depths of 21.2 (Ks) to 23.1 (Z).
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Figure 5: VIRCAM detector plane looking “down” on it from “above”. On the sky the detectors are
placed in a mirror image with detector No. 1 in the top right. The numbers in brackets at each science
detector indicate the number of the IRACE controller used to run the corresponding detector. The
wavefront sensors are also shown. The gaps between the detectors are ∼10.4 and ∼4.9 arcmin,
along the X and Y axis, respectively. Each detector covers ∼11.6×11.6 arcmin on the sky. North is
up, and East is to the right, for rotator offset 0.0.

0.339 arcsec px−1 on the sky, and each detector covers a ∼694×694arcsec2 area of sky. The 16
detectors cover 274.432 mm×216.064mm on the focal plane, which gives a nominal field of view of
1.292×1.017deg on the sky. To ensure the flatness of the focal plane assembly (FPA), all pixels are
enclosed between two planes, separated by 25µm, measured along the optical axis of the camera.
In other words, the distance between the most deviating pixels, measured along the optical axis is
≤25µm.

The Nyquist sampling suggests an image quality of ∼0.68 arcsec but it is expected to gain a factor
of ∼0.7 (yielding FWHM ∼0.5 arcsec) in resolution because of the sub-pixel sampling. The science
detectors are sensitive over the wavelength range 0.85–2.4µm. The detector readout time is ∼1 sec
and the size of a single file is ∼256.7 MB.

The mean quantum efficiencies of all 16 detectors are: (Z,Y ,J ,H,KS )=(70,80,90,96,92)%. A plot of
the quantum efficiency as function of wavelength for this type of the detectors in shown in Figure 6.
In addition, the combined losses due to reflection off all VIRCAM lens surfaces are 3-5%.

The science detectors are read out simultaneously by four enhanced ESO IRACE IR controllers, with
a total of 256 simultaneous readout channels, so each detector is read into 16 stripes of 2048×128
pixels. The minimum detector integration time is 1.0011 sec.

All detectors but one are linear to ≤4.6% for illumination levels below 10000 ADU, and for the worst
one the non-linearity at this level is ∼10% (Table 3). There is also a small non-linearity of 1-2%
at low illumination levels (<1000 ADU) that affects all detectors. It can not be measured with the
calibration plan linearity monitoring but the effect is neglegible. These values may change with time,
check the VIRCAM web page for more up to date information. The linearity is correctable for up
to ∼25000ADU (the number varies for the different detectors). The stability of the non-linearity



Benefits of NIR



Ground-based imaging

Slide courtesy of Meghan Gray

Credit: STAGES team



Space-based imaging

STAGES:  Gray et al 2009

Slide courtesy of Meghan Gray

Credit: STAGES team



Euclid
• ESA/NASA Space Telescope. 
• Launch in ∼2020. 

• optical+NIR imaging of 15k deg2. 
• Measure w0 to <2% and wa to <10%. 

• Open huge parameter space. 

• Needs to be complemented by ground-based data. 
• LSST is crucial in the South. North is patchwork.



• 8.4m optical wide-field imaging telescope 

• Huge camera, rapid survey speed, 18,000deg2 total 

• Deep multi-band photometry (also time domain) 

• Crucial complement to Euclid 

• Very challenging data rate 

• US-led with international partners



Summary & Outlook
• Cosmic shear measures S8 with CMB-like precision. 

• Tension between Planck and some cosmic shear 
measurements. Systematics? New physics?? 

• Very exciting times: 
• KiDS+VIKING >900deg2 now, 1350deg2 by end 2018. 
• DES will (has) triple area and double(d) depth. 
• Waiting for first HSC cosmic shear results. 

• Requires excellent calibration data (ESO LP, Keck). 

• Prepare with today’s surveys for Euclid/LSST/WFIRST.


