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Neutrino Properties

Thomas Schwetz

•Three-flavour neutrino parameters

•Beyond Standard Model neutrino interactions

•Hints for sterile neutrinos at the eV scale

Outline



T. Schwetz @ COSMO 20172

3-neutrino parameters
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•3 masses: Δm221 , Δm231, m0

•3 mixing angles θ12 θ13 θ23

• 3 phases (1 Dirac, 2 Majorana)
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•NuFit: www.nu-fit.org

•MC Gonzalez-Garcia, M Maltoni, et al

•updated global fit results 
including 2-dim chi2 maps

• last release NuFit-3.0  
NuFit-3.1 in preparation

• this talk: preliminary results from  
NuFit-3.0 + summer 2017 results from T2K

3-flavour mixing - global fit

Esteban et al., 1611.01514

http://www.nu-fit.org
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•well determined 
parameters 
 
θ12 θ13 Δm

2
21 |Δm

2
31| 

 

open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit
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•well determined 
parameters 
 
θ12 θ13 Δm
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open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit
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•well determined 
parameters 
 
θ12 θ13 Δm
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open issues:

•θ23: octant/maximality

•mass ordering

•δCP : preference for 
180° < δCP < 360°

3-flavour mixing - global fit
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open issues:

NuFit 3.0 + T2K17 (PRELIMINARY)
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Leptonic CP violation
Neutrino oscillations Current status and implications

CP violation
Leptonic CP violation will manifest itself in a di�erence of the vacuum
oscillation probabilities for neutrinos and anti-neutrinos
Cabibbo, 1977; Bilenky, Hosek, Petcov, 1980, Barger, Whisnant, Phillips, 1980

P‹–æ‹— ≠ P‹̄–æ‹̄— Ã J , J = |Im(U–1Uú
–2Uú

—1U—2)|
J : leptonic analogue to Jarlskog-invariant Jarlskog, 1985

standard parameterization: J = s12c12s23c23s13c2
13 sin ” © Jmax sin ”

present data NuFit 2.0: Jmax = 0.0329 ± 0.0009 (1‡)
compare with Jarlskog invariant in the quark sector:

J
CKM

= (3.06+0.21
≠0.20) ◊ 10≠5

I CPV for leptons might be a factor 1000 larger than for quarks
I OBS: for quarks we know J , for leptons only Jmax (do not know ”!)

T. Schwetz 22
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Figure 3. Dependence of the global ��

2 function on the Jarlskog invariant. The red (blue) curves
are for NO (IO).

leptonic mixing matrix:

|U | =

0

B@
0.800 ! 0.844 0.515 ! 0.581 0.139 ! 0.155

0.229 ! 0.516 0.438 ! 0.699 0.614 ! 0.790

0.249 ! 0.528 0.462 ! 0.715 0.595 ! 0.776

1

CA . (2.1)

Note that there are strong correlations between the elements due to the unitary constraint.

The present status of the determination of leptonic CP violation is illustrated in Fig. 3.

In the left panel we show the dependence of ��

2 of the global analysis on the Jarlskog

invariant which gives a convention-independent measure of CP violation [57], defined as

usual by:

Im
⇥
U

↵i

U

⇤
↵j

U

⇤
�i

U

�j

⇤
⌘ J

max

CP

sin � = cos ✓
12

sin ✓
12

cos ✓
23

sin ✓
23

cos2 ✓
13

sin ✓
13

sin � (2.2)

where we have used the parametrization in Eq. (1.1). Thus the determination of the mixing

angles yields at present a maximum allowed CP violation

J

max

CP

= 0.0329± 0.0007 (+0.0021

�0.0024

) (2.3)

at 1� (3�) for both orderings. The preference of the present data for non-zero �

CP

implies

a best fit value J

best

CP

= �0.033, which is favored over CP conservation with ��

2 = 1.7.

These numbers can be compared with the size of the Jarlskog invariant in the quark sector,

which is determined to be J

quarks

CP

= (3.04+0.21

�0.20

)⇥ 10�5 [58].

In Fig. 4 we recast the allowed regions for the leptonic mixing matrix in terms of

one leptonic unitarity triangle. Since in the analysis U is unitary by construction, any

given pair of rows or columns can be used to define a triangle in the complex plane.

In the figure we show the triangle corresponding to the unitarity conditions on the first

and third columns which is the equivalent to the one usually shown for the quark sector.

– 7 –

NuFit 3.0:

Neutrino oscillations Current status and implications

CP violation
Leptonic CP violation will manifest itself in a di�erence of the vacuum
oscillation probabilities for neutrinos and anti-neutrinos
Cabibbo, 1977; Bilenky, Hosek, Petcov, 1980, Barger, Whisnant, Phillips, 1980

P‹–æ‹— ≠ P‹̄–æ‹̄— Ã J , J = |Im(U–1Uú
–2Uú

—1U—2)|
J : leptonic analogue to Jarlskog-invariant Jarlskog, 1985

standard parameterization: J = s12c12s23c23s13c2
13 sin ” © Jmax sin ”

present data NuFit 2.0: Jmax = 0.0329 ± 0.0009 (1‡)
compare with Jarlskog invariant in the quark sector:

J
CKM

= (3.06+0.21
≠0.20) ◊ 10≠5

I CPV for leptons might be a factor 1000 larger than for quarks
I OBS: for quarks we know J , for leptons only Jmax (do not know ”!)
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•CPV is a necessary condition for Leptogenesis

•CPV observable in oscillations can be related to 
Leptogenesis only within a specific model

•observation of CPV cannot be a „prove“ of 
Leptogenesis — only „circumstantial evidence“

Leptonic CP violation

Comment on Leptogenesis:
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Dirac CP phase — recent T2K results
M. Hartz, KEK colloquium, August 4, 2017

T2K DATA COLLECTION HISTORY

Published Results

This data added for 
today’s results

➤ Accumulated 14.7x1020 protons-on-target (POT) in neutrino mode and   
7.6x1020 POT in antineutrino mode - full data set presented here 
➤ 29% of the approved T2K POT 
➤ 7.5x1020 neutrino mode, 7.5x1020 antineutrino mode for published results 

➤ Phys. Rev. Lett. 118 (2017) no.15, 151801  - PRL Editor’s Suggestion 
➤ Accelerator has achieved stable operation with 470 kW beam power 

➤ Thanks to high power operation, double neutrino data in 1 year! 17

PREDICTED AND OBSERVED EVENT RATES

42

➤ The number of observed events are largely in line with the predictions after 
oscillations 
➤ The e-like samples have rates most consistent with the δcp=-π/2 hypothesis

Predicted Rates Observed

Sample δcp=-π/2 δcp=0 δcp=π/2 δcp=π Rates

CCQE 1-Ring e-like FHC 73.5 61.5 49.9 62.0 74
CC1π 1-Ring e-like FHC 6.92 6.01 4.87 5.78 15
CCQE 1-Ring e-like RHC 7.93 9.04 10.04 8.93 7
CCQE 1-Ring µ-like FHC 267.8 267.4 267.7 268.2 240
CCQE 1-Ring µ-like RHC 63.1 62.9 63.1 63.1 68

➤ The observed μ-like rate in neutrino mode is lower than prediction 
➤ Consistent within statistical and systematic errors

neutrino

neutrino

neutrino
anti-neutrino

anti-neutrino
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Dirac CP phase — recent T2K results
M. Hartz, KEK colloquium, August 4, 2017
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APPEARANCE PARAMETERS

62

➤ Adding the reactor constraint 
improves the constraint on δcp 

Reactor 
1σ band

With Reactor Constraint

➤ Fit without the reactor 
constraint: closed contours in δcp 
at 90% CL 

➤ The T2K value for sin2θ13 is 
consistent with the PDG 2016 
average:

T2K Best Fit:

PDG 2016:

T2K Preliminary

T2K Preliminary
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Dirac CP phase — recent T2K results
M. Hartz, KEK colloquium, August 4, 2017
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APPEARANCE PARAMETERS

62

➤ Adding the reactor constraint 
improves the constraint on δcp 

Reactor 
1σ band

With Reactor Constraint

➤ Fit without the reactor 
constraint: closed contours in δcp 
at 90% CL 

➤ The T2K value for sin2θ13 is 
consistent with the PDG 2016 
average:

T2K Best Fit:

PDG 2016:

T2K Preliminary

T2K Preliminary

 (rad)CPδ
3− 2− 1− 0 1 2 3

ln
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0

5

10

15
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25

30 Normal
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MEASUREMENT OF δcp

64

The 2σ CL confidence interval:

2σ CL Intervals

Normal hierarchy:  [-2.98, -0.60] radians 
Inverted hierarchy: [-1.54, -1.19] radians

CP conserving values (0,π) fall outside of the 2σ CL intervals

Best fit point:                     -1.83 radians in Normal Hierarchy

The 1σ CL confidence interval: Normal hierarchy:  [-2.49, -1.23] radians 

critical Δχ2 values 
for 2σ confidence 
level

CP conserving values 0 and π are 
outside the 2σ CL intervals! 
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Dirac CP phase — global fit

•best fit at δCP ≈ 240°

•CP conservation allowed with Δ𝝌2 ≈ 4

•region between 16° and 150° disfavoured with Δ𝝌2 > 9
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m

2
31 for NO

and �m

2
32 for IO.

– 5 –

NuFit 3.0 + T2K17 (PRELIMINARY)
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for inverted ordering and/or θ23 > 45° 
lepton mixing is very different from quarks

1 2 3
generation
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Entering the era of redundancy
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Figure 6. Determination of �m

2
3` at 1� and 2� (2 dof), where ` = 1 for NO (upper panels) and

` = 2 for IO (lower panels). The left panels show regions in the (✓23,�m

2
3`) plane using both

appearance and disappearance data from MINOS (green line), T2K (red lines), NO⌫A (light blue
lines), as well as IceCube DeepCore (orange lines) and the combination of them (colored regions).
In these panels the constraint on ✓13 from the global fit (which is dominated by the reactor data)
is imposed as a Gaussian bias. The right panels show regions in the (✓13,�m

2
3`) plane using only

Daya-Bay (black lines), reactor data without Daya-Bay (violet lines), and their combination (colored
regions). In all panels solar and KamLAND data are included to constrain �m

2
21 and ✓12. Contours

are defined with respect to the global minimum of the two orderings.

currently followed by the LBL accelerator experiments: we marginalize with respect to ✓

13

,

taking into account the information from reactor data by adding a Gaussian penalty term

to the corresponding �

2

LBL

. This is not the same as making a combined analysis of LBL

and reactor data as we will quantify in Sec. 3.2.1.

Concerning ⌫

e

disappearance data, the total rates observed in reactor experiments at

di↵erent baselines can provide an independent determination of �m

2

3`

[50, 62]. On top of

this, the observation of the energy-dependent oscillation e↵ect due to ✓

13

now allows to

further strengthen such measurement. In the right panels of Fig. 6 we show therefore the

allowed regions in the (✓
13

,�m

2

3`

) plane based on global data on ⌫

e

disappearance. The

violet contours are obtained from all the medium-baselines reactor experiments with the

exception of Daya-Bay; these regions emerge from the baseline e↵ect mentioned above plus

– 10 –
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•several consistent 
results in νμ 
disappearance

NO

IO

νμ disappearance νe disappearance        

NuFit 3.0



T. Schwetz @ COSMO 201714

Mass ordering

•Preference for NO with Δ𝝌2 ≈ 3

•mostly driven by T2K vs Reactor
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Absolute neutrino mass
Neutrino oscillations Absolute neutrino mass

Absolute neutrino mass
Three ways to measure absolute neutrino mass:
sensitive to di�erent quantities

I Neutrinoless double beta-decay: (A, Z ) æ (A, Z + 2) + 2e≠

(with caveats: lepton number violation)
mee = | q

i U2
eimi |

I Endpoint of beta spectrum: 3H æ3He +e≠ + ‹̄e

(experimentally challenging æ KATRIN)
m2

— =
q

i |U2
ei |m2

i

I Cosmology
(with caveats: cosmological model/data selection)
q

i mi

T. Schwetz 26
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Neutrino oscillations Absolute neutrino mass

Absolute neutrino mass
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Neutrino oscillations Absolute neutrino mass

Absolute neutrino mass

10-3 10-2 10-1

mνe
 [eV]

10-1

100

Σ 
m

ν [e
V

]

NO IO

K
A

TR
IN

 sens

Planck + BAO + ...

10-3 10-2 10-1 100

mee [eV]

NO IO Xe

Ge

0‹—— : Ge: GERDA + HDM + IGEX, Xe: KamLAND-Zen + EXO
ranges due to NME compilation from Dev et al., 1305.0056
cosmology: Planck Dec. 2014

relies on standard three-flavour scenario and standard cosmology
Any inconsistency would indicate new physics!
T. Schwetz 27

17

Baur et al., 1506.05976

Absolute neutrino mass

incl. Lyman-α

C
os

m
ol

og
y

beta-decay neutrinoless double beta-decay



T. Schwetz @ COSMO 201718

1 Introduction

Current data on neutrino oscillations show a degeneracy between two possible orderings of

the neutrino mass states, the normal ordering (NO) and inverted ordering (IO). Breaking

this degeneracy is one of the main goals of upcoming oscillation experiments, e.g., [1–5],

see [6] for an overview. On the other hand, also cosmological observations potentially may

contribute to this question. Cosmological structure formation is sensitive mostly to the sum

of the neutrino masses, ⌃. There are subtle e↵ects sensitive to the details of the neutrino

mass spectrum beyond the sum, see e.g., [7–10]. With realistic observations in the foreseeable

future those e↵ects will be very hard to detect [10]. Focusing on the sum of masses, we can

use that oscillation data determine the mass-squared di↵erences and we have:

⌃ ⌘
3X

i=1

mi =

(
m

0

+
p

�m2

21

+m2

0

+
p

�m2

31

+m2

0

(NO)

m
0

+
p

|�m2

32

|+m2

0

+
p

|�m2

32

|��m2

21

+m2

0

(IO)
, (1.1)

where m
0

denotes the lightest neutrino mass, where by convention m
0

⌘ m
1

(m
3

) for NO

(IO). The mass-squared di↵erences�m2

ij ⌘ m2

i�m2

j are determined to [11] (1� uncertainties):

�m2

21

= 7.49+0.19
�0.17 ⇥ 10�5 eV2 ,

�m2

31

= 2.484+0.045
�0.048 ⇥ 10�3 eV2 (NO)

�m2

32

= �2.467+0.041
�0.042 ⇥ 10�3 eV2 (IO)

. (1.2)

For a zero lightest neutrino mass (m
0

= 0), the predictions for the sum are (1� uncer-

tainties)

⌃ =

(
58.5± 0.48meV (NO)

98.6± 0.85meV (IO)
(m

0

= 0) . (1.3)

Hence, if cosmological observations provide a determination of ⌃ significantly below 0.098 eV,

the inverted mass ordering would be disfavoured.

Recent data from Planck CMB data combined with baryonic acoustic oscillations (BAO)

and other observations lead to the bound ⌃ < 0.23 eV at 95% CL (PlanckTT + lowP +

lensing + BAO + JLA + H
0

), see [12] for details. Depending on the used data and variations

in the analysis, di↵erent authors obtain upper bounds from current data approaching the

“critical” value of 0.1 eV [13–17]. These results suggest that IO starts to get under pressure

from cosmology.

In this note we want to point out that such a claim should be based on a proper statistical

analysis. The question to be answered is, whether the hypothesis of IO can be rejected with

some confidence against NO. For a related discussion in the context of oscillation experiments

see for instance ref. [6] formulated in terms of frequentist hypothesis testing, or ref. [18] using

Bayesian reasoning. Indeed, just from the numbers in eq. (1.3) one sees that it is not enough

that the upper bound on ⌃ is below 0.098 eV, but instead cosmology needs to determine

⌃ with an accuracy better than about 0.02 eV in order to exclude a value of 0.098 eV

against 0.059 eV at 2�. Note that this would imply a & 3� detection of a non-zero value

2
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Figure 1: Posterior likelihood function from current data (Planck+BAO+H
0

). The left panel shows the

posterior likelihood function for ⌃, where we indicate the predicted values for NO and IO in the case of

m
0

= 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m
0

for NO and IO with appropriate relative normalization. The

dashed, dot-dashed, solid curves correspond to the approximation that 1, 2, 3 massive neutrinos contribute

to ⌃ (see text for details).

none of these scenarios actually corresponds to the realistic cases of NO or IO with mass-

squared di↵erences constrained by oscillations. However, the spread in the results will be

indicative for our assumption that cosmology is sensitive only to ⌃. Indeed we confirm that

within the numerical accuracy all three models lead to an upper bound of 0.14 eV (95% CL).

The posterior likelihood function is shown in fig. 1. The left panel shows the likelihood

as a function of ⌃, and we indicate the predicted values for ⌃ for NO and IO assuming

m
0

= 0, as well as the 95% CL upper bound on ⌃, assuming a flat prior in ⌃ � 0. Note

that the region of largest likelihood, for ⌃ < 59 meV, is actually unphysical, since such small

values for the sum of the neutrino masses are inconsistent with neutrino oscillation data.

Hence, this region will be cut away once the sum is expressed using eq. (1.1) and imposing

the physical requirement of m
0

� 0.

In order to apply eq. (2.2) to calculate the probability of IO vs NO we translate the

likelihood into a posterior likelihood as a function of m
0

by using eq. (1.1).2 The resulting

likelihoods are shown in the right panel of fig. 1. The posterior odds for NO versus IO are

given by the ratio of the integrals over those two curves weighted by the prior probabilities

for the orderings. Assuming equal prior probabilities for NO and IO, eq. (2.2) leads to a

probability for IO of pI = 0.35, which corresponds to posterior odds for NO versus IO of

about 1.9:1. Clearly, using even quite restrictive assumptions about the cosmological model

2We neglect the uncertainty induced by the uncertainty on the mass-squared di↵erences from oscillation

data. For an accuracy on ⌃ larger than 0.01 eV this is an excellent approximation, see also sec. 4.
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Hannestad, Schwetz, 1606.04691

Excluding inverted ordering with cosmology?
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1 Introduction

Current data on neutrino oscillations show a degeneracy between two possible orderings of

the neutrino mass states, the normal ordering (NO) and inverted ordering (IO). Breaking

this degeneracy is one of the main goals of upcoming oscillation experiments, e.g., [1–5],

see [6] for an overview. On the other hand, also cosmological observations potentially may

contribute to this question. Cosmological structure formation is sensitive mostly to the sum

of the neutrino masses, ⌃. There are subtle e↵ects sensitive to the details of the neutrino

mass spectrum beyond the sum, see e.g., [7–10]. With realistic observations in the foreseeable

future those e↵ects will be very hard to detect [10]. Focusing on the sum of masses, we can

use that oscillation data determine the mass-squared di↵erences and we have:
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where m
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) for NO

(IO). The mass-squared di↵erences�m2
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. (1.2)

For a zero lightest neutrino mass (m
0

= 0), the predictions for the sum are (1� uncer-

tainties)

⌃ =

(
58.5± 0.48meV (NO)

98.6± 0.85meV (IO)
(m

0

= 0) . (1.3)

Hence, if cosmological observations provide a determination of ⌃ significantly below 0.098 eV,

the inverted mass ordering would be disfavoured.

Recent data from Planck CMB data combined with baryonic acoustic oscillations (BAO)

and other observations lead to the bound ⌃ < 0.23 eV at 95% CL (PlanckTT + lowP +

lensing + BAO + JLA + H
0

), see [12] for details. Depending on the used data and variations

in the analysis, di↵erent authors obtain upper bounds from current data approaching the

“critical” value of 0.1 eV [13–17]. These results suggest that IO starts to get under pressure

from cosmology.

In this note we want to point out that such a claim should be based on a proper statistical

analysis. The question to be answered is, whether the hypothesis of IO can be rejected with

some confidence against NO. For a related discussion in the context of oscillation experiments

see for instance ref. [6] formulated in terms of frequentist hypothesis testing, or ref. [18] using

Bayesian reasoning. Indeed, just from the numbers in eq. (1.3) one sees that it is not enough

that the upper bound on ⌃ is below 0.098 eV, but instead cosmology needs to determine

⌃ with an accuracy better than about 0.02 eV in order to exclude a value of 0.098 eV

against 0.059 eV at 2�. Note that this would imply a & 3� detection of a non-zero value
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Figure 1: Posterior likelihood function from current data (Planck+BAO+H
0

). The left panel shows the

posterior likelihood function for ⌃, where we indicate the predicted values for NO and IO in the case of

m
0

= 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m
0

for NO and IO with appropriate relative normalization. The

dashed, dot-dashed, solid curves correspond to the approximation that 1, 2, 3 massive neutrinos contribute

to ⌃ (see text for details).

none of these scenarios actually corresponds to the realistic cases of NO or IO with mass-

squared di↵erences constrained by oscillations. However, the spread in the results will be

indicative for our assumption that cosmology is sensitive only to ⌃. Indeed we confirm that

within the numerical accuracy all three models lead to an upper bound of 0.14 eV (95% CL).

The posterior likelihood function is shown in fig. 1. The left panel shows the likelihood

as a function of ⌃, and we indicate the predicted values for ⌃ for NO and IO assuming

m
0

= 0, as well as the 95% CL upper bound on ⌃, assuming a flat prior in ⌃ � 0. Note

that the region of largest likelihood, for ⌃ < 59 meV, is actually unphysical, since such small

values for the sum of the neutrino masses are inconsistent with neutrino oscillation data.

Hence, this region will be cut away once the sum is expressed using eq. (1.1) and imposing

the physical requirement of m
0

� 0.

In order to apply eq. (2.2) to calculate the probability of IO vs NO we translate the

likelihood into a posterior likelihood as a function of m
0

by using eq. (1.1).2 The resulting

likelihoods are shown in the right panel of fig. 1. The posterior odds for NO versus IO are

given by the ratio of the integrals over those two curves weighted by the prior probabilities

for the orderings. Assuming equal prior probabilities for NO and IO, eq. (2.2) leads to a

probability for IO of pI = 0.35, which corresponds to posterior odds for NO versus IO of

about 1.9:1. Clearly, using even quite restrictive assumptions about the cosmological model

2We neglect the uncertainty induced by the uncertainty on the mass-squared di↵erences from oscillation

data. For an accuracy on ⌃ larger than 0.01 eV this is an excellent approximation, see also sec. 4.
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Excluding inverted ordering with cosmology?

„Strong evidence“ for NO claimed in Simpson et al. 1703.03425
→ be aware of Bayesian priors [TS et al. 1703.04585] 

http://de.arxiv.org/abs/1703.03425
http://de.arxiv.org/abs/1703.04585
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Figure 2: Posterior likelihood function from simulated future data (EUCLID+Planck CMB). The left

panel shows the posterior likelihood function for ⌃ for a fiducial model with one massive neutrino with

m⌫ = 0.06 eV and two massless neutrinos. We indicate the predicted values for NO and IO in the case of

m
0

= 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m
0

for NO and IO with appropriate relative normalization.

as above we transform the likelihood now into a likelihood for m
0

assuming either NO or IO,

see right panel. We ignore the small e↵ects of the di↵erent orderings of the neutrino masses

and use the same likelihood to describe both normal and inverted orderings. As mentioned

above this should be an excellent approximation for the used data set. The relative posterior

likelihood for NO and IO is given by the ratio of the areas under the two curves. Assuming

equal prior probabilities for NO and IO we obtain a probability for IO according to eq. (2.2)

of 8%, which corresponds to posterior odds of NO versus IO of approximately 12:1.

4 Sensitivity estimates with a Gaussian toy likelihood

From fig. 2 one can see that the likelihood function as a function of ⌃ is close to Gaussian.

This is certainly true for the simulated EUCLID data, but holds approximately also for

present data. To estimate the required accuracy needed on ⌃ to exclude IO we assume

therefore that the likelihood function from cosmology can be approximated by

L(⌃obs|m
0

, O) =
1p
2⇡�

exp


�(⌃obs � ⌃(m

0

, O))2

2�2

�
(4.1)

where ⌃(m
0

, O) is given in eq. (1.1), and �2 = �2

osc

+ �2

obs

, with �
osc

(m
0

, O) being the error

on ⌃ induced by the uncertainty on the mass-squared di↵erences according to eq. (1.2), and

�
obs

is the accuracy on ⌃ assumed for the cosmological data. From eq. (1.3) we see that

�
osc

is below 1 meV for both orderings and m
0

= 0. For non-zero m
0

, �
osc

is even smaller.

Hence, for �
obs

& 0.01 eV, the uncertainty on ⌃ from oscillation data is negligible.
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• need accuracy better than 
0.02 eV to exclude 0.1 eV 
against 0.06 eV at 2σ

• this would imply a 3σ 
evidence for non-zero 
neutrino mass  
(for Sum = 0.06 eV)

simulated future data: 
2 yrs of EUCLID data, available ~2023-24

Excluding inverted ordering with cosmology?
Hannestad, Schwetz, 1606.04691

1 Introduction

Current data on neutrino oscillations show a degeneracy between two possible orderings of

the neutrino mass states, the normal ordering (NO) and inverted ordering (IO). Breaking

this degeneracy is one of the main goals of upcoming oscillation experiments, e.g., [1–5],

see [6] for an overview. On the other hand, also cosmological observations potentially may

contribute to this question. Cosmological structure formation is sensitive mostly to the sum

of the neutrino masses, ⌃. There are subtle e↵ects sensitive to the details of the neutrino

mass spectrum beyond the sum, see e.g., [7–10]. With realistic observations in the foreseeable

future those e↵ects will be very hard to detect [10]. Focusing on the sum of masses, we can

use that oscillation data determine the mass-squared di↵erences and we have:

⌃ ⌘
3X

i=1

mi =

(
m

0

+
p

�m2

21

+m2

0

+
p

�m2

31

+m2

0

(NO)

m
0

+
p

|�m2

32

|+m2

0

+
p

|�m2

32

|��m2

21

+m2

0

(IO)
, (1.1)

where m
0

denotes the lightest neutrino mass, where by convention m
0

⌘ m
1

(m
3

) for NO

(IO). The mass-squared di↵erences�m2

ij ⌘ m2

i�m2

j are determined to [11] (1� uncertainties):

�m2

21

= 7.49+0.19
�0.17 ⇥ 10�5 eV2 ,

�m2

31

= 2.484+0.045
�0.048 ⇥ 10�3 eV2 (NO)

�m2

32

= �2.467+0.041
�0.042 ⇥ 10�3 eV2 (IO)

. (1.2)

For a zero lightest neutrino mass (m
0

= 0), the predictions for the sum are (1� uncer-

tainties)

⌃ =

(
58.5± 0.48meV (NO)

98.6± 0.85meV (IO)
(m

0

= 0) . (1.3)

Hence, if cosmological observations provide a determination of ⌃ significantly below 0.098 eV,

the inverted mass ordering would be disfavoured.

Recent data from Planck CMB data combined with baryonic acoustic oscillations (BAO)

and other observations lead to the bound ⌃ < 0.23 eV at 95% CL (PlanckTT + lowP +

lensing + BAO + JLA + H
0

), see [12] for details. Depending on the used data and variations

in the analysis, di↵erent authors obtain upper bounds from current data approaching the

“critical” value of 0.1 eV [13–17]. These results suggest that IO starts to get under pressure

from cosmology.

In this note we want to point out that such a claim should be based on a proper statistical

analysis. The question to be answered is, whether the hypothesis of IO can be rejected with

some confidence against NO. For a related discussion in the context of oscillation experiments

see for instance ref. [6] formulated in terms of frequentist hypothesis testing, or ref. [18] using

Bayesian reasoning. Indeed, just from the numbers in eq. (1.3) one sees that it is not enough

that the upper bound on ⌃ is below 0.098 eV, but instead cosmology needs to determine

⌃ with an accuracy better than about 0.02 eV in order to exclude a value of 0.098 eV

against 0.059 eV at 2�. Note that this would imply a & 3� detection of a non-zero value

2

minimal values:
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• three-flavour scenario very robust

•most extensions lead to sub-leading perturbations ex.: 
non-unitarity, eV-scale sterile neutrinos 

• counter example: non-standard interactions 
(until last month!)

Neutrino properties  
beyond 3-flavour oscillations
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Non-standard neutrino interactions

Non-standard neutrino interactions

Non-standard neutrino interactions
Neutrino interactions in the Standard Model:

H‹–
SM = GFÔ

2
‹̄–“µ(1 ≠ “5)‹–

ÿ

f
f̄ “µ(g–,f

V ≠ g–,f
A “5)f

assume presence of new physics inducing NSI:

HNSI = GFÔ
2

‹̄–“µ(1 ≠ “5)‹—

ÿ

f
f̄ “µ‘f

–—f

I ‘f
–— parametrizes strength of NSI relative to GF

I restrict to vector-type interactions (matter potential)
I NSI can be non-universal (– = —) or flavour-changing (– ”= —)
I in general not directly related to neutrino mass (dim-6)

but generically expected at some level

T. Schwetz – IPA16 17

assume presence of NC-like dim-6 effective operators:
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ

90% CL 3�

Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D

"uee � "uµµ +0.298 [+0.00,+0.51] � [�1.19,�0.81] [�0.09,+0.71] � [�1.40,�0.68]

"u⌧⌧ � "uµµ +0.001 [�0.01,+0.03] [�0.03,+0.03] [�0.03,+0.20] [�0.19,+0.20]

"ueµ �0.021 [�0.09,+0.04] [�0.09,+0.10] [�0.16,+0.11] [�0.16,+0.17]

"ue⌧ +0.021 [�0.14,+0.14] [�0.15,+0.14] [�0.40,+0.30] [�0.40,+0.40]

"uµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"uD �0.140 [�0.24,�0.01] � [+0.40,+0.58] [�0.34,+0.04] � [+0.34,+0.67]

"uN �0.030 [�0.14,+0.13] [�0.15,+0.13] [�0.29,+0.21] [�0.29,+0.21]

"dee � "dµµ +0.310 [+0.02,+0.51] � [�1.17,�1.03] [�0.10,+0.71] � [�1.44,�0.87]

"d⌧⌧ � "dµµ +0.001 [�0.01,+0.03] [�0.01,+0.03] [�0.03,+0.19] [�0.16,+0.19]

"deµ �0.023 [�0.09,+0.04] [�0.09,+0.08] [�0.16,+0.11] [�0.16,+0.17]

"de⌧ +0.023 [�0.13,+0.14] [�0.13,+0.14] [�0.38,+0.29] [�0.38,+0.35]

"dµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"dD �0.145 [�0.25,�0.02] � [+0.49,+0.57] [�0.34,+0.05] � [+0.42,+0.70]

"dN �0.036 [�0.14,+0.12] [�0.14,+0.12] [�0.28,+0.21] [�0.28,+0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
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5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ

90% CL 3�

Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D

"uee � "uµµ +0.298 [+0.00,+0.51] � [�1.19,�0.81] [�0.09,+0.71] � [�1.40,�0.68]

"u⌧⌧ � "uµµ +0.001 [�0.01,+0.03] [�0.03,+0.03] [�0.03,+0.20] [�0.19,+0.20]

"ueµ �0.021 [�0.09,+0.04] [�0.09,+0.10] [�0.16,+0.11] [�0.16,+0.17]

"ue⌧ +0.021 [�0.14,+0.14] [�0.15,+0.14] [�0.40,+0.30] [�0.40,+0.40]

"uµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"uD �0.140 [�0.24,�0.01] � [+0.40,+0.58] [�0.34,+0.04] � [+0.34,+0.67]

"uN �0.030 [�0.14,+0.13] [�0.15,+0.13] [�0.29,+0.21] [�0.29,+0.21]

"dee � "dµµ +0.310 [+0.02,+0.51] � [�1.17,�1.03] [�0.10,+0.71] � [�1.44,�0.87]

"d⌧⌧ � "dµµ +0.001 [�0.01,+0.03] [�0.01,+0.03] [�0.03,+0.19] [�0.16,+0.19]

"deµ �0.023 [�0.09,+0.04] [�0.09,+0.08] [�0.16,+0.11] [�0.16,+0.17]

"de⌧ +0.023 [�0.13,+0.14] [�0.13,+0.14] [�0.38,+0.29] [�0.38,+0.35]

"dµ⌧ �0.001 [�0.01,+0.01] [�0.01,+0.01] [�0.03,+0.03] [�0.03,+0.03]

"dD �0.145 [�0.25,�0.02] � [+0.49,+0.57] [�0.34,+0.05] � [+0.42,+0.70]

"dN �0.036 [�0.14,+0.12] [�0.14,+0.12] [�0.28,+0.21] [�0.28,+0.21]

Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
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5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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NSI constraints from oscillation data

• limits of few %, 

•exceptions: εeτ, εee-εμμ

90% CL 3�

Param. best-fit LMA LMA� LMA-D LMA LMA� LMA-D
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Table 1. 90% and 3� allowed ranges for the matter potential parameters "f↵� for f = u, d as
obtained from the global analysis of oscillation data. The results are obtained after marginalizing
over oscillation and the other matter potential parameters either within the LMA only and within
either LMA or LMA-D subspaces respectively. The numbers quoted are the SNO-poly variant of
the solar analysis. See text for details.

5 Summary

In this article we have quantified our current knowledge of the size and flavor structure of the

matter background e↵ects in the evolution of solar, atmospheric, reactor and LBL neutrinos

based solely on a global analysis of oscillation data. It complements the study in Ref. [54]

where the analysis of the matter potential was perform only considering atmospheric and

LBL neutrinos.

After briefly presenting the most general parametrization of the matter potential and

its connection with non-standard neutrino interactions (NSI), we have focused on the anal-

ysis of solar and KamLAND data. We have found (see Fig. 2) that the fit always prefers

some non-standard value of the matter potential parameters, while the SM potential lies at

a ��2 ⇠ 5–8 depending on the details of the analysis. This is consequence of the fact that

none of the experiments sensitive to 8B neutrinos has provided so far evidence of the low

energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).

We have also found in that the present analysis still allows for two disconnected regions in

the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),

and that the statistical di↵erence between both solutions never exceeds ��2 = 1.4. Al-

though the LMA-D solution requires rather large values of the matter parameters, we have

shown (and latter quantified in Sec. 4) that it is still fully compatible with the bounds from

atmospheric and LBL oscillation data.
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energy turn-up of the spectrum predicted in the standard LMA MSW solution (see Fig. 3).
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the parameter space, the “standard” LMA region and the “dark side” LMA-D (see Fig. 1),
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Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-

– 15 –



T. Schwetz @ COSMO 201724

NSI constraints from oscillation data

•slightly improved fit to solar 
neutrino data

Gonzalez-Garcia, Maltoni, 1307.3092

0

5

10

15

20

∆
χ

2

f=u

-2 -1 0 1

ε
f

ee
− ε

f

µµ

0

5

10

15

20

∆
χ

2

-0.25 0 0.25

ε
f

ττ
− ε

f

µµ

-0.2 0 0.2

ε
f

eµ

-0.5 0 0.5

ε
f

eτ

-0.05 0 0.05

ε
f

µτ

f=d

SNO-DATA

LMA
SNO-POLY

LMA
SNO-DATA

LMA-D
SNO-POLY

LMA-D

Figure 6. Dependence of the ��2 function for the global analysis of solar, atmospheric, reactor
and LBL data on the NSI parameters "f↵� for f = u (upper panels) and f = d (lower panels), for
both LMA and LMA-D regions and the two variants of the SNO analysis, as labeled in the figure.

ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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global analysis discussed in the next section (green lines). In order to take into account

the dependence on the neutrino production point, which is of particular relevance in the

presence of non-standard matter potential, we define the average survival probability hPeei
as

hPee(E⌫)i =
P

i�i(E⌫)
R
⇢i(r)Pee(E⌫ , r) drP
i�i(E⌫)

(3.1)

where i = pp, pep, 7Be, 13N, 15O, 17F, 8B and hep labels the neutrino production reaction

and ⇢i(r) is the distribution of production points for the reaction i normalized to 1.

4 Results of global analysis

We now present the results of the global analysis including also atmospheric, LBL and all

other reactor data. The data samples included here are the same as in the NuFIT 1.1

analysis described in Ref. [8]. For atmospheric data we use the Super-Kamiokande results

from phases 1–4 [74], adding the 1097 days of phase 4 to their published data from phases

1–3 [75]. For what concerns long-baseline accelerator experiments, we combine the energy

distribution obtained by MINOS in both ⌫µ (⌫̄⌫) disappearance [76] and ⌫e (⌫̄e) appearance

with 10.7 (3.36) ⇥ 1020 protons on target [77], and T2K ⌫e appearance and ⌫µ disappear-

ance data for phases 1–3 corresponding to 3.01 ⇥ 1020 pot [78]. For oscillation signals at
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ter potential parameters "fD and "fN relevant in the propagation of solar and KamLAND

neutrinos. In both figures we display separately the results of the marginalization in the

LMA and the LMA-D regions of the parameter space, as well as both the SNO-data and

SNO-poly variants of the solar analysis. From these figures we derive the 90% and 3�

allowed ranges for the NSI parameters implied by the global analysis, which we summarize

in Table 1. The results in this table correspond to the SNO-poly analysis and have been

obtained for real matter potential parameters. As discussed in Sec. 2, in such a case only

the relative sign of the various "f↵ 6=� and the vacuum mixing angles can be determined by

oscillations. Thus strictly speaking once the results are marginalized with respect to all

other parameters in the most general parameter space, the oscillation analysis can only

provide bounds on |"f↵ 6=� |. Still, for the sake of completeness we have decided to retain

in Table 1 the signs of the non-diagonal "f↵ 6=� , which is correct as long as such signs are

understood to be relative vacuum-matter quantities and not intrinsic NSI features.

Neutrino scattering experiments such as CHARM [94, 95], CDHSW [96] and NuTeV [97]

are sensitive to NSI with u and d, and can therefore yield information on "f↵� [98]. In

Ref. [73] it was found that the combination with CHARM scattering results [94, 95] for

f = d substantially lifts the statistical di↵erence between LMA and LMA-D. Although a

rigorous combined analysis of the oscillation results presented here with those from scatter-
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Figure 5. Two-dimensional projections of the 90%, 95%, 99% and 3� CL (2 dof) allowed regions
of the oscillation parameters for f = u and the SNO-poly variant of the solar analysis, after
marginalizing over the matter potential parameters and the undisplayed oscillation parameters.
The full regions and the star correspond to the global analysis including NSI, while the black-
contour void regions and the triangle correspond to the analysis with the usual SM potential. The
green and red dotted areas show the 90% and 3� CL allowed regions from partial analyses where
the e↵ects of the non-standard matter potential have been neglected either in the solar+KamLAND
(green) or in the atmospheric+LBL (red) sectors.

NSI with quarks (f = u, d) this degeneracy is lifted once the solar data are also included

in the analysis, as discussed in Sec. 2.2. Thus the colored regions are not exactly identical

for both orderings, although with present data the asymmetry is still minimal.

In Fig. 6 we plot the dependence of the ��2 function for the global analysis on the NSI

parameters "f↵� , after marginalizing over the undisplayed oscillation and matter potential

parameters. Similarly, in Fig. 7 we show the present determination on the e↵ective mat-
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• related to a sign-flip in Δm231

degeneracy makes 
determination of mass 
ordering by oscillation 
experiments impossible!

Coloma, Schwetz, 16

LMA-dark degeneracy
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COHERENT results

•observation of coherent 
neutrino-nucleus scattering 
at 6.7σ at CsI[Na] detector

•neutrinos from stopped pion 
source at Oak Ridge NL

•142 events observed,  
in agreement with Standard 
Model

measurable scintillation or ionization in common radiation detector materials. This is 

exacerbated by a trade-off between the enhancement to the CEnNS cross-section brought about 

by a large nuclear mass, and the smaller maximum recoil energy of a heavy target nucleus.     

 

Fig. 1. (A) Coherent Elastic Neutrino-Nucleus Scattering. For a sufficiently small momentum 
exchange (q) during neutral-current neutrino scattering (qR < 1, where R is the nuclear radius in 
natural units), a long-wavelength Z boson can probe the entire nucleus, and interact with it as a 
whole. An inconspicuous low-energy nuclear recoil is the only observable. However, the 
probability of neutrino interaction increases dramatically, with the square of the number of 
neutrons in the target nucleus. In scintillating materials, the ensuing dense cascade of secondary 
recoils dissipates a fraction of its energy as detectable light. (B) Total cross-sections from 
CEnNS and some known neutrino couplings. Included are neutrino-electron scattering, 
charged-current (CC) interaction with iodine, and inverse beta decay (IBD). Because of their 
similar nuclear masses, cesium and iodine respond to CEnNS almost identically. The present 
CEnNS measurement involves neutrino energies in the range ~16-53 MeV, the lower bound 
defined by the lowest nuclear recoil energy measured (Fig. S9), the upper bound by SNS 
neutrino emissions (Fig. S2). The cross-section for neutrino-induced neutron (NIN) generation 
following 208Pb(ne,e- xn) is also shown. This reaction, originating in lead shielding around the 
detectors, can generate a potential beam-related background affecting CEnNS searches. The 
cross-section for CEnNS is more than two orders of magnitude larger than for IBD, the 
mechanism employed for neutrino discovery (35). 

                      

Science 2017 [arXiv:1708.01294]
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COHERENT results

•COHERENT data exclude 
LMA-D degeneracy at 
more than 3σ

Science 2017 [arXiv:1708.01294]
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FIG. 1: ��2 as a function of NSI parameters ✏f,V↵� , for a global fit to oscillation experiments (dashed curves) and for a fit
to oscillations and COHERENT data (solid curves). Blue lines correspond to the LMA solution (✓12 < ⇡/4), while the red
lines correspond to the LMA-D solution (✓12 > ⇡/4). We minimize the �2 with respect to all oscillations parameters and all
un-displayed NSI parameters in each panel.

The predicted number of signal events NNSI, for a given
set of NSI parameters ", can be expressed as:

NNSI(") = �
⇥
feQ

2
we(") + (f⌫µ + f⌫̄µ)Q

2
wµ(")

⇤
, (7)

where � is an overall normalization constant which de-
pends on the exposure, detector e�ciencies, etc. We then
construct a chi-squared function �2

COH using just the to-
tal number of events, according to the expression given
in the supplementary material of Ref. [13]. We consider
Nmeas = 142 observed events and take into account the
statistical errors of the signal and the subtracted back-
ground, as well as systematic errors of the signal (28%)
and beam-on background (25%). The normalization con-
stant � (which is not given in Ref. [13]) is determined by
requiring the �2 to be zero at the best-fit point quoted
in Ref. [13] (i.e., ✏u,Vee = �0.57, ✏d,Vee = 0.59, all other
✏f,V↵� = 0).1

To illustrate the impact of COHERENT on the LMA-
D solution, we show in Fig. 2 the chi-squared for oscil-
lations and for the COHERENT experiment separately,
projected onto the ✏f,Vee vs ✏f,Vµµ plane. In this example,
we have restricted to flavour diagonal NSI with f = u
quarks. Oscillation data only constraints the di↵erence

1 Let us note that, with this procedure, our constraints on ✏u,Vee

and ✏d,Vee turn out slightly weaker than the result in Ref. [13] (our
90% CL interval is about 20% larger). Hence our results can be
regarded as conservative.

FIG. 2: Allowed regions in the plane of ✏u,Vee and ✏u,Vµµ from
the COHERENT experiment shown together with the allowed
regions from the global oscillation analysis. Diagonal shaded
bands correspond to the LMA and LMA-D regions as indi-
cated, at 1�, 2�, 3� (2 dof). The COHERENT regions are
shown at 1� and 2� only because the 3� region extends be-
yond the boundaries of the figure.

✏f,Vee �✏f,Vµµ and therefore two separate bands in this plane
are allowed by the data: one corresponding to the LMA,
and a second one for the LMA-D solution. Conversely,
the COHERENT experiment constrains the combination
given in Eq. (6) and therefore its results project onto an
ellipse in this plane.

Results. Our final results for the combined fit of oscil-
lations and COHERENT data are given in Fig. 1, where
we show as full lines the total ��2 = �(�2

OSC + �2
COH)
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The predicted number of signal events NNSI, for a given
set of NSI parameters ", can be expressed as:
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⇥
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, (7)

where � is an overall normalization constant which de-
pends on the exposure, detector e�ciencies, etc. We then
construct a chi-squared function �2

COH using just the to-
tal number of events, according to the expression given
in the supplementary material of Ref. [13]. We consider
Nmeas = 142 observed events and take into account the
statistical errors of the signal and the subtracted back-
ground, as well as systematic errors of the signal (28%)
and beam-on background (25%). The normalization con-
stant � (which is not given in Ref. [13]) is determined by
requiring the �2 to be zero at the best-fit point quoted
in Ref. [13] (i.e., ✏u,Vee = �0.57, ✏d,Vee = 0.59, all other
✏f,V↵� = 0).1

To illustrate the impact of COHERENT on the LMA-
D solution, we show in Fig. 2 the chi-squared for oscil-
lations and for the COHERENT experiment separately,
projected onto the ✏f,Vee vs ✏f,Vµµ plane. In this example,
we have restricted to flavour diagonal NSI with f = u
quarks. Oscillation data only constraints the di↵erence

1 Let us note that, with this procedure, our constraints on ✏u,Vee

and ✏d,Vee turn out slightly weaker than the result in Ref. [13] (our
90% CL interval is about 20% larger). Hence our results can be
regarded as conservative.
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bands correspond to the LMA and LMA-D regions as indi-
cated, at 1�, 2�, 3� (2 dof). The COHERENT regions are
shown at 1� and 2� only because the 3� region extends be-
yond the boundaries of the figure.

✏f,Vee �✏f,Vµµ and therefore two separate bands in this plane
are allowed by the data: one corresponding to the LMA,
and a second one for the LMA-D solution. Conversely,
the COHERENT experiment constrains the combination
given in Eq. (6) and therefore its results project onto an
ellipse in this plane.

Results. Our final results for the combined fit of oscil-
lations and COHERENT data are given in Fig. 1, where
we show as full lines the total ��2 = �(�2

OSC + �2
COH)

Coloma, Gonzalez-Garcia, 
Maltoni, Schwetz 1708.02899

http://de.arxiv.org/abs/1708.02899
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Hints for neutrino mass state at eV scalePhenomenologically driven extensions of the lepton sector Sterile neutrinos at the eV scale

Sterile neutrinos at the eV scale?

I reactor anomaly (‹̄e disappearance)

I Gallium anomaly (‹̄e disappearance)

I LSND (‹̄µ æ ‹̄e appearance)

I MiniBooNE
(‹µ æ ‹e , ‹̄µ æ ‹̄e appearance)

(3+2) scheme
∆m2LSND

∆m2sol

∆m2atm

∆m2LSND

νe ν
µ
ν
τ
νs

m2
i

mostly based on Kopp, Machado, Maltoni, Schwetz, 1303.3011
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few hints at ~3σ
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Reactor anomaly

•predicted neutrino fluxes from nuclear reactors are larger than observed 
Huber 11, Mueller et al 11

•can be explained by oscillations at eV scale

•calculations depend on difficult nuclear physics 

10 100 1000
distance from reactor [m]

0.7

0.8

0.9

1

1.1

ob
se

rv
ed

 / 
no

 o
sc

. e
xp

ec
te

d

∆m2 = 0.44 eV2, sin22θ14 = 0.13  

∆m2 = 1.75 eV2, sin22θ14 = 0.10  

∆m2 = 0.9 eV2, sin22θ14 = 0.057

solid: sin22θ13 = 0.085
dashed: θ13 = 0



T. Schwetz @ COSMO 201731

Recent developments on reactor anomaly

•Daya Bay 17 determines flux of 
4 leading isotopes by using time 
evolution of reactor fuel →  
~2.7σ hint for deficit dominated 
by 235U (disfavours sterile 
neutrinos)

•But significance of this result 
goes down in global analysis of 
reactor data  
Giunti, Ji, Laveder, Li, Littlejohn, 17;  
Dentler, Hernandez, Kopp, Maltoni, Schwetz, 
in prep

5

spectively, are incompatible at 2.6� confidence level.
The evolution of Daya Bay’s IBD yield pictured in Fig. 2

was also used to measure the individual IBD yields of 235U
and 239Pu. For each F239 bin a in Fig. 2, the measured IBD
yield can be described as

�a
f =

X

i

F a
i �i, (5)

where F a
i are the effective fission fractions for each isotope,

and �i is the IBD yield from that isotope. Measurements from
all bins can be summarized with the matrix equation

�f = F�, (6)

where �f is an eight-element vector of the measured IBD
yields, � is a vector containing the IBD yields of the four fis-
sion isotopes, and F is a 8⇥4 matrix containing fission frac-
tions for the data in each F239 bin. This matrix equation was
used to construct a �2 test statistic

�2 = (�f � F�)>V�1(�f � F�), (7)

which allows a scan over the full � parameter space. The
matrix V is a covariance matrix containing the previously dis-
cussed statistical, reactor, and detector uncertainties, and their
correlation between measurements �f .

FIG. 3. Combined measurement of 235U and 239Pu IBD yields per
fission �235 and �239. The red triangle indicates the best fit �235

and �239, while green contours indicate two-dimensional 1�, 2� and
3� allowed regions. Contours utilize theoretically predicted IBD
yields for the subdominant isotopes 241Pu and 238U as indicated in
the lower left panel. Predicted values and 1� allowed regions based
on the Huber-Mueller model are also shown in black. The top and
side panels show one-dimensional ��2 profiles for �235 and �239,
respectively.

In order to break the degeneracy from contributions of
the two minor fission isotopes 241Pu and 238U, weak con-
straints were applied to these isotopes’ IBD yields. This was

accomplished in Eq. 7 by adding terms (�i � �̂i)2/✏2i for
238U and 241Pu, where �̂i and ✏i are theoretically predicted
IBD yields and assigned uncertainties, which were treated as
fully uncorrelated. Values for �̂i were taken from Ref. [4]
for 238U (10.1⇥10�43 cm2/fission) and Ref. [3] for 241Pu (
6.05⇥10�43 cm2/fission). Values ✏i were set at 10% of the
model-predicted yield, significantly higher than the quoted
Huber-Mueller uncertainties, in order to reduce the potential
bias to the fit.

The IBD yields from 235U and 239Pu, �235 and
�239, were found to be (6.17 ± 0.17) and (4.27 ±
0.26) ⇥10�43 cm2/fission, respectively. Allowed regions and
one-dimensional ��2 profiles for �235 and �239 are shown in
Fig. 3. The measurement is currently limited in precision by
the AD-correlated uncertainty in Daya Bay’s detection effi-
ciency, and by the statistical uncertainty in the measurements
�f . The 10% uncertainties assigned to �238,241 provide a
subdominant contribution to the uncertainty in �235 and �239.
This �235 is 7.8% lower than the Huber-Mueller model value
of (6.69±0.15) ⇥10�43 cm2/fission, a difference significantly
larger than the 2.7% measurement uncertainty. A measured
�235 yield deficit has also been reported using global fits to an-
tineutrino data from reactors of varying fission fractions [28].
The measured �239 value is consistent with the predicted value
of (4.36±0.11) ⇥10�43 cm2/fission within the 6% uncertainty
of the measurement.

By applying additional constraints on �f in Eq. 7, these
�235 and �239 results were tested for consistency with hypo-
thetical �f values representing differing sources of the reactor
antineutrino anomaly. If the anomaly is produced solely via
incorrect predictions of 235U, the measured �235 should devi-
ate from its predicted value while �238,239,241 remain at their
predicted values; enforcement of this additional constraint in
Eq. 7 produced a best fit higher by ��2/NDF= 0.17/1 (two-
sided p-value 0.68). A similar test of 239Pu as the sole source
of the anomaly yielded a best-fit value higher by ��2/NDF =
10.0/1 (p-value 0.00016). Requiring all isotopes in Eq. 7 to
exhibit an equal fractional deficit with respect to prediction,
the best fit was found to be higher by ��2/NDF= 7.9/1
(p-value 0.0049). Thus, the hypothesis that 235U is primar-
ily responsible for the reactor antineutrino anomaly is favored
by the Daya Bay data, with the equal deficit and 239Pu-only
deficit hypotheses disfavored at the 2.8� and 3.2� confidence
levels, respectively.

To investigate changes in the antineutrino spectrum with
reactor fuel evolution, observed IBD spectra per fission, S,
were examined, where �f =

P
j Sj , the sum of IBD yields in

all prompt energy bins. For each F239 bin depicted in Fig. 4,
the measured Sj values were compared to the F239-averaged
IBD yield per fission value Sj . The ratio Sj/Sj is plotted
against F239 in Fig. 4 for four different Ep bins. The common
negative slope in Sj/Sj visible in all prompt energy ranges
indicates an overall reduction in reactor antineutrino flux with
increasing F239, as demonstrated in Fig. 2. In addition, the
trends in Sj/Sj with F239 in Fig. 4 differ for each energy bin,
indicating a change in the spectral shape with fuel evolution.
In particular, the content of higher-energy bins decreases more
rapidly than lower-energy bins as F239 increases.



T. Schwetz @ COSMO 201732

• first results from 
NEOS and DANSS 
cut into parameter 
region

•data show „wiggles“ 
consistent between 
NEOS and DANSS 
and the anomaly 

Figure 1: Allowed parameter regions at 2� (2 dof) for the “flux-fixed” analysis, for the “old” data sample

defined in table 2 (khaki regions), for the DANSS [27], Daya Bay spect. [42], the combined Day Bay spect.

+ NEOS [25] oscillation analyses, and the combined region of all data including also Daya Bay flux [28] (red

regions). The cross marks the best fit of the combined region.

3.2 Results for the Combined Analysis of Reactor Data

In fig. 1 we illustrate the impact of the recent oscillation analyses from NEOS, DANSS, and
Daya Bay spectrum. In khaki, we show the 2� allowed parameter region in the sin2 2✓14
vs. �m2

41 plane, based on data predating the summer conferences 2016. The corresponding
data sets are marked with “–” in the last column of table 2. The black and green dashed
contours show the new exclusion limits from Daya Bay and DANSS, and the blue contours
depict the limit from the combined NEOS and Daya Bay spectral analysis. Due to the long
baseline of the Daya Bay detectors, these data constrain the region of �m2

41 . 0.3 eV2, while
both NEOS and DANSS are most sensitive in the RAA region around few eV2. The NEOS
data alone lead to closed regions with a best fit point below �m2

41 ' 0.1 eV2, deep in the
Daya Bay excluded region. Therefore, we decided to show only the combined NEOS+Daya
Bay constraint, in order to avoid the e↵ect of the minimum in the excluded region. The
complementarity of the two data sets is clearly visible, by comparing the blue and black
curves.

Both, NEOS and DANSS exclusion curves show strong wiggles in the RAA region of
1 eV2 . �m2

41 . 5 eV2. Especially for NEOS, those features can be traced back to a slight
oscillatory pattern of the spectrum, cf. fig. 3 of Ref. [25]. Indeed, the NEOS + Daya Bay

8

Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep

Recent developments on reactor anomaly
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Global data on νe disappearance

•significance at slightly below 3σ
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Figure 4: Allowed parameter regions at 2� (2 dof) for the “flux-fixed” analysis, for all
(–)

⌫ e disappearance

experiments. The regions preferred by the LBL reactor experiments, the LBL combined with SBL reactor

experiments, the radioactive source experiments and all
(–)

⌫ e disappearance data combined are shaded, with

the respective best fit points marked. Exclusion limits from ⌫e scattering on C-12 and KamLAND combined

with solar data are shown as lines. MD: The caption probably needs to be worked on

4.2 Results

The results of our global analysis of all
(–)

⌫ e disappearance experiments are shown in Figs. 4
and 5 for the “flux-fixed” and “flux-free” analysis, respectively. As can be seen, in both
cases the combined fit is largely dominated by the reactor neutrino data.

For what concerns solar neutrino data, the mass-squared di↵erence �m2
41 implied by the

reactor anomaly is virually infinite in the calculation of the Pee survival probability, hence its
specific value is not constrained by solar experiments. The bound on ✓14 is mainly driven the
good agreement between the theoretical expectation of 8B neutrinos, which is predicted by
the Standard Solar Model, and its precise determination in high-energy solar experiments,
either from direct measurements (through neutral-current interactions in SNO) or indirectly
(through the combination of charge-current and elastic-scattering data in SNO and SK).
The inclusion of a sterile neutrino admixture with ⌫e implies an overall reduction of the flux
of active neutrinos at the detector, thus spoiling such agreement. This results on an upper
bound on ✓14, which in the case of the “flux fixed” analysis is fully compatible with the
entire region allowed by reactor data, thus adding little to the global analysis. In the “flux
free” case solar data help restricting the ✓14 range in the region �m2

41 & 4 eV2, where the
shortness of the oscillation wavelength implies an uniform suppression of the reactor neutrino
flux at all reactor experiments, which cannot be disentangled from a rescaling of the flux

13

Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep
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Global data on νe disappearance

•significance at slightly below 3σ
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4.2 Results

The results of our global analysis of all
(–)

⌫ e disappearance experiments are shown in Figs. 4
and 5 for the “flux-fixed” and “flux-free” analysis, respectively. As can be seen, in both
cases the combined fit is largely dominated by the reactor neutrino data.

For what concerns solar neutrino data, the mass-squared di↵erence �m2
41 implied by the

reactor anomaly is virually infinite in the calculation of the Pee survival probability, hence its
specific value is not constrained by solar experiments. The bound on ✓14 is mainly driven the
good agreement between the theoretical expectation of 8B neutrinos, which is predicted by
the Standard Solar Model, and its precise determination in high-energy solar experiments,
either from direct measurements (through neutral-current interactions in SNO) or indirectly
(through the combination of charge-current and elastic-scattering data in SNO and SK).
The inclusion of a sterile neutrino admixture with ⌫e implies an overall reduction of the flux
of active neutrinos at the detector, thus spoiling such agreement. This results on an upper
bound on ✓14, which in the case of the “flux fixed” analysis is fully compatible with the
entire region allowed by reactor data, thus adding little to the global analysis. In the “flux
free” case solar data help restricting the ✓14 range in the region �m2

41 & 4 eV2, where the
shortness of the oscillation wavelength implies an uniform suppression of the reactor neutrino
flux at all reactor experiments, which cannot be disentangled from a rescaling of the flux
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Figure 5: Allowed parameter regions at 2� (2 dof) for the “flux-free” analysis, for all
(–)

⌫ e disappearance

experiments. The regions preferred by the radioactive source experiments and all
(–)

⌫ e disappearance data

combined are shaded, with the respective best fit points marked. Exclusion limits from ⌫e scattering on

C-12, KamLAND combined with solar data, LBL reactor experiments, and LBL combined with SBL reactor

data are shown as lines. MD: The caption probably needs to be worked on

normalization. Similar arguments also apply to the LSND & KARMEN data on 12C, which
observe no deviation from the standard oscillation scenario and therefore impose an upper
bound on ✓14 in the large �m2

41 region.
The situation for what concerns the Gallium anomaly is somewhat di↵erent. As already

explained, the GALLEX and SAGE experiments observe a deficit which can be interpreted
in terms of sterile neutrino oscillations. However, its 2� allowed region shows little overlap
with the reactor region, except for a small area at large �m2

41. In general, Gallium data
favor a larger value of ✓14 than reactor data. It should be noted, however, than while the
lower bound on ✓14 from GALLEX and SAGE is rather weak, with the no-oscillation value
✓14 = 0 disfavored only by ��2 = 8.72 with respect to the best-fit (see Sec. 3.2 of Ref. [16]),
the upper bound on ✓14 from reactor data is pretty strong for �m2

41 . 5 eV2. Therefore,
a combination of reactor and gallium data naturally favor the reactor region, rather than
the GALLEX and SAGE one, so that the net contribution of gallium data is vastly reduced.
Indeed, as can be seen also in Table 3 the results of the global analysis di↵er little from those
of the reactor-only one. MM: please check this part carefully!

14

Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep

• even for flux-free analysis hint remains at ~2σ
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Hints for neutrino mass state at eV scalePhenomenologically driven extensions of the lepton sector Sterile neutrinos at the eV scale

Sterile neutrinos at the eV scale?

I reactor anomaly (‹̄e disappearance)

I Gallium anomaly (‹̄e disappearance)

I LSND (‹̄µ æ ‹̄e appearance)

I MiniBooNE
(‹µ æ ‹e , ‹̄µ æ ‹̄e appearance)

(3+2) scheme
∆m2LSND

∆m2sol

∆m2atm

∆m2LSND
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µ
ν
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mostly based on Kopp, Machado, Maltoni, Schwetz, 1303.3011
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Global data on appearance

•LSND signal at 3.8σ

•MB antineutrino excess 
(2.8σ) consistent with 
oscillations

•MB neutrino excess 
(3.4σ) marginally 
consistent with osc.  
(p-value 6.1%)
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Fitting all together?
Phenomenologically driven extensions of the lepton sector Sterile neutrinos at the eV scale

Can we fit everything together?
appearance

Pµe = sin2 2◊µe sin2 �m2
41L

4E sin2 2◊µe = 4|Ue4|2|Uµ4|2

disappearance (– = e, µ)

P–– = 1 ≠ sin2 2◊–– sin2 �m2
41L

4E sin2 2◊–– = 4|U–4|2(1 ≠ |U–4|2)

sin2 2◊µe ¥ 1
4 sin2 2◊ee sin2 2◊µµ

‹µ æ ‹e app. signal requires also signal in both, ‹e and ‹µ disappearance
(appearance mixing angle quadratically suppressed)

T. Schwetz 44
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Fitting all together?
Phenomenologically driven extensions of the lepton sector Sterile neutrinos at the eV scale

Can we fit everything together?
non-observation of ‹µ disappearance leads to tension between appearance
and disappearance data
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C. Giunti et al, 1308.5288 find somewhat better fit: P ¥ 10≠3
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Fitting all together?
Phenomenologically driven extensions of the lepton sector Sterile neutrinos at the eV scale

Can we fit everything together?
non-observation of ‹µ disappearance leads to tension between appearance
and disappearance data
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tension is expected to become even more severe              



T. Schwetz @ COSMO 201739
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Fig. 29. Samples from the Planck TT+lowP posterior in theP
m⌫–H0 plane, colour-coded by �8. Higher

P
m⌫ damps

the matter fluctuation amplitude �8, but also decreases H0
(grey bands show the direct measurement H0 = (70.6 ±
3.3) km s�1Mpc�1, Eq. 30). Solid black contours show the con-
straint from Planck TT+lowP+lensing (which mildly prefers
larger masses), and filled contours show the constraints from
Planck TT+lowP+lensing+BAO.

high multipoles produces a relatively small improvement to the
Planck TT+lowP+BAO constraint (and the improvement is even
smaller with the alternative CamSpec likelihood) so we consider
the TT results to be our most reliable constraints.

The constraint of Eq. (54b) is consistent with the 95 % limit
of
P

m⌫ < 0.23 eV reported in PCP13 for Planck+BAO. The
limits are similar because the linear CMB is insensitive to the
mass of neutrinos that are relativistic at recombination. There is
little to be gained from improved measurement of the CMB tem-
perature power spectra, though improved external data can help
to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
much smaller masses (see e.g. Abazajian et al. 2015b).

As discussed in detail in PCP13 and Sect. 5.1, the Planck
CMB power spectra prefer somewhat more lensing smoothing
than predicted in⇤CDM (allowing the lensing amplitude to vary
gives AL > 1 at just over 2�). The neutrino mass constraint
from the power spectra is therefore quite tight, since increas-
ing the neutrino mass lowers the predicted smoothing even fur-
ther compared to base ⇤CDM. On the other hand the lensing
reconstruction data, which directly probes the lensing power,
prefers lensing amplitudes slightly below (but consistent with)
the base ⇤CDM prediction (Eq. 18). The Planck+lensing con-
straint therefore pulls the constraints slightly away from zero to-
wards higher neutrino masses, as shown in Fig. 30. Although the
posterior has less weight at zero, the lensing data are incompati-
ble with very large neutrino masses so the Planck+lensing 95 %
limit is actually tighter than the Planck TT+lowP result:

X
m⌫ < 0.68 eV (95%,Planck TT+lowP+lensing). (55)

Fig. 30. Constraints on
P

m⌫ for various data combinations.

Adding the polarization spectra improves this constraint slightly
to
X

m⌫ < 0.59 eV (95%,Planck TT,TE,EE+lowP+lensing).
(56)

We take the combined constraint further including BAO, JLA,
and H0 (“ext”) as our best limit
X

m⌫ < 0.23 eV

⌦⌫h2 < 0.0025

9>>=
>>; 95%, Planck TT+lowP+lensing+ext.

(57)
This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO, (which is tighter in both the
CamSpec and Plik likelihoods) but is immune to low level sys-
tematics that might a↵ect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are23

H0 = 67.7 ± 0.6

�8 = 0.810+0.015
�0.012

9>=
>; Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2015). The situation with galaxy
weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2014).

23To simplify the displayed equations, H0 is given in units of
km s�1Mpc�1 in this section.
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Fig. 31. Samples from Planck TT+lowP chains in the Ne↵–H0
plane, colour-coded by �8. The grey bands show the constraint
H0 = (70.6 ± 3.3) km s�1Mpc�1 of Eq. (30). Note that higher
Ne↵ brings H0 into better consistency with direct measurements,
but increases �8. Solid black contours show the constraints from
Planck TT,TE,EE+lowP+BAO. Models with Ne↵ < 3.046 (left
of the solid vertical line) require photon heating after neutrino
decoupling or incomplete thermalization. Dashed vertical lines
correspond to specific fully-thermalized particle models, for ex-
ample one additional massless boson that decoupled around the
same time as the neutrinos (�Ne↵ ⇡ 0.57), or before muon
annihilation (�Ne↵ ⇡ 0.39), or an additional sterile neutrino
that decoupled around the same time as the active neutrinos
(�Ne↵ ⇡ 1).

A larger range of neutrino masses was found by Beutler et al.
(2014) using a combination of RSD, BAO, and weak lens-
ing information. The tension between the RSD results and
base ⇤CDM was subsequently reduced following the analysis
of Samushia et al. (2014), as shown in Fig. 17. Galaxy weak
lensing and some cluster constraints remain in tension with base
⇤CDM, and we discuss possible neutrino resolutions of these
problems in Sect. 6.4.4.

Another way of potentially improving neutrino mass con-
straints is to use measurements of the Ly↵ flux power spectrum
of high-redshift quasars. Palanque-Delabrouille et al. (2014)
have recently reported an analysis of a large sample of quasar
spectra from the SDSSIII/BOSS survey. When combining their
results with 2013 Planck data, these authors find a bound

P
m⌫ <

0.15 eV (95 % CL), compatible with the results presented in this
section.

An exciting future prospect is the possible direct detection
of non-relativistic cosmic neutrinos by capture on tritium, for
example with the PTOLEMY experiment (Cocco et al. 2007;
Betts et al. 2013; Long et al. 2014). Unfortunately, for the mass
range

P
m⌫ < 0.23 eV preferred by Planck, detection with the

first generation experiment will be di�cult.

6.4.2. Constraints on Ne↵

Dark radiation density in the early Universe is usually parame-
terized by Ne↵ , defined so that the total relativistic energy density
in neutrinos and any other dark radiation is given in terms of the

photon density ⇢� at T ⌧ 1 MeV by

⇢ = Ne↵
7
8

 
4

11

!4/3

⇢�. (59)

The numerical factors in this equation are included so that
Ne↵ = 3 for three standard model neutrinos that were thermal-
ized in the early Universe and decoupled well before electron-
positron annihilation. The standard cosmological prediction is
actually Ne↵ = 3.046, since neutrinos are not completely de-
coupled at electron-positron annihilation and are subsequently
slightly heated (Mangano et al. 2002).

In this section we focus on additional density from mass-
less particles. In addition to massless sterile neutrinos, a variety
of other particles could contribute to Ne↵ . We assume that the
additional massless particles are produced well before recombi-
nation, and neither interact nor decay, so that their energy den-
sity scales with the expansion exactly like massless neutrinos.
An additional �Ne↵ = 1 could correspond to a fully thermal-
ized sterile neutrino that decoupled at T <⇠ 100 MeV; for ex-
ample any sterile neutrino with mixing angles large enough to
provide a potential resolution to short-baseline reactor neutrino
oscillation anomalies would most likely thermalize rapidly in the
early Universe. However, this solution to the neutrino oscillation
anomalies requires approximately 1 eV sterile neutrinos, rather
than the massless case considered in this section; exploration of
the two parameters Ne↵ and

P
m⌫ is reported in Sect. 6.4.3. For

a review of sterile neutrinos see Abazajian et al. (2012).
More generally the additional radiation does not need to be

fully thermalized, for example there are many possible models
of non-thermal radiation production via particle decays (see e.g.,
Hasenkamp & Kersten 2013; Conlon & Marsh 2013). The radi-
ation could also be produced at temperatures T > 100 MeV,
in which case typically �Ne↵ < 1 for each additional species,
since heating by photon production at muon annihilation (at
T ⇡ 100 MeV) decreases the fractional importance of the ad-
ditional component at the later times relevant for the CMB. For
particles produced at T � 100 MeV the density would be di-
luted even more by numerous phase transitions and particle anni-
hilations, and give �Ne↵ ⌧ 1. Furthermore, if the particle is not
fermionic, the factors entering the entropy conservation equation
are di↵erent, and even thermalized particles could give specific
fractional values of �Ne↵ . For example Weinberg (2013) consid-
ers the case of a thermalized massless boson, which contributes
�Ne↵ = 4/7 ⇡ 0.57 if it decouples in the range 0.5 MeV < T <
100 MeV like the neutrinos, or �Ne↵ ⇡ 0.39 if it decouples at
T > 100 MeV (before the photon production at muon annihila-
tion, hence undergoing fractional dilution).

In this paper we follow the usual phenomenological ap-
proach where we constrain Ne↵ as a free parameter with a wide
flat prior, though we comment on a few discrete cases separately
below. Values of Ne↵ < 3.046 are less well motivated, since they
would require the standard neutrinos to be incompletely thermal-
ized or additional photon production after neutrino decoupling,
but we include this range for completeness.

Figure 31 shows that Planck is entirely consistent with the
standard value Ne↵ = 3.046. However, a significant density of
additional radiation is still allowed, with the (68 %) constraints

Ne↵ = 3.13 ± 0.32 Planck TT+lowP ; (60a)
Ne↵ = 3.15 ± 0.23 Planck TT+lowP+BAO ; (60b)
Ne↵ = 2.99 ± 0.20 Planck TT,TE,EE+lowP ; (60c)
Ne↵ = 3.04 ± 0.18 Planck TT,TE,EE+lowP+BAO . (60d)
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PLANCK coll., 1502.01589

X
m⌫ < 0.23 eV(95% CL)

Planck+BAO+H0+...

Ne↵ = 3.04± 0.18 (68% CL)

Planck TT,TE,EE+lowP+BAO

3+1 SBL osc



T. Schwetz @ COSMO 201739

Cosmology
Planck Collaboration: Cosmological parameters

0.0 0.4 0.8 1.2 1.6

�m� [eV]

55

60

65

70

75

H
0
[k

m
s�

1
M

p
c�

1
]

0.60

0.64

0.68

0.72

0.76

0.80

0.84

�
8

Fig. 29. Samples from the Planck TT+lowP posterior in theP
m⌫–H0 plane, colour-coded by �8. Higher

P
m⌫ damps

the matter fluctuation amplitude �8, but also decreases H0
(grey bands show the direct measurement H0 = (70.6 ±
3.3) km s�1Mpc�1, Eq. 30). Solid black contours show the con-
straint from Planck TT+lowP+lensing (which mildly prefers
larger masses), and filled contours show the constraints from
Planck TT+lowP+lensing+BAO.

high multipoles produces a relatively small improvement to the
Planck TT+lowP+BAO constraint (and the improvement is even
smaller with the alternative CamSpec likelihood) so we consider
the TT results to be our most reliable constraints.

The constraint of Eq. (54b) is consistent with the 95 % limit
of
P

m⌫ < 0.23 eV reported in PCP13 for Planck+BAO. The
limits are similar because the linear CMB is insensitive to the
mass of neutrinos that are relativistic at recombination. There is
little to be gained from improved measurement of the CMB tem-
perature power spectra, though improved external data can help
to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
much smaller masses (see e.g. Abazajian et al. 2015b).

As discussed in detail in PCP13 and Sect. 5.1, the Planck
CMB power spectra prefer somewhat more lensing smoothing
than predicted in⇤CDM (allowing the lensing amplitude to vary
gives AL > 1 at just over 2�). The neutrino mass constraint
from the power spectra is therefore quite tight, since increas-
ing the neutrino mass lowers the predicted smoothing even fur-
ther compared to base ⇤CDM. On the other hand the lensing
reconstruction data, which directly probes the lensing power,
prefers lensing amplitudes slightly below (but consistent with)
the base ⇤CDM prediction (Eq. 18). The Planck+lensing con-
straint therefore pulls the constraints slightly away from zero to-
wards higher neutrino masses, as shown in Fig. 30. Although the
posterior has less weight at zero, the lensing data are incompati-
ble with very large neutrino masses so the Planck+lensing 95 %
limit is actually tighter than the Planck TT+lowP result:

X
m⌫ < 0.68 eV (95%,Planck TT+lowP+lensing). (55)

Fig. 30. Constraints on
P

m⌫ for various data combinations.

Adding the polarization spectra improves this constraint slightly
to
X

m⌫ < 0.59 eV (95%,Planck TT,TE,EE+lowP+lensing).
(56)

We take the combined constraint further including BAO, JLA,
and H0 (“ext”) as our best limit
X

m⌫ < 0.23 eV

⌦⌫h2 < 0.0025

9>>=
>>; 95%, Planck TT+lowP+lensing+ext.

(57)
This is slightly weaker than the constraint from Planck
TT,TE,EE+lowP+lensing+BAO, (which is tighter in both the
CamSpec and Plik likelihoods) but is immune to low level sys-
tematics that might a↵ect the constraints from the Planck polar-
ization spectra. Equation (57) is therefore a conservative limit.
Marginalizing over the range of neutrino masses, the Planck con-
straints on the late-time parameters are23

H0 = 67.7 ± 0.6

�8 = 0.810+0.015
�0.012

9>=
>; Planck TT+lowP+lensing+ext. (58)

For this restricted range of neutrino masses, the impact on the
other cosmological parameters is small and, in particular, low
values of �8 will remain in tension with the parameter space
preferred by Planck.

The constraint of Eq. (57) is weaker than the constraint of
Eq. (54b) excluding lensing, but there is no good reason to disre-
gard the Planck lensing information while retaining other astro-
physical data. The CMB lensing signal probes very-nearly lin-
ear scales and passes many consistency checks over the multi-
pole range used in the Planck lensing likelihood (see Sect. 5.1
and Planck Collaboration XV 2015). The situation with galaxy
weak lensing is rather di↵erent, as discussed in Sect. 5.5.2. In
addition to possible observational systematics, the weak lensing
data probe lower redshifts than CMB lensing, and smaller spa-
tial scales where uncertainties in modelling nonlinearities in the
matter power spectrum and baryonic feedback become impor-
tant (Harnois-Déraps et al. 2014).

23To simplify the displayed equations, H0 is given in units of
km s�1Mpc�1 in this section.
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Fig. 31. Samples from Planck TT+lowP chains in the Ne↵–H0
plane, colour-coded by �8. The grey bands show the constraint
H0 = (70.6 ± 3.3) km s�1Mpc�1 of Eq. (30). Note that higher
Ne↵ brings H0 into better consistency with direct measurements,
but increases �8. Solid black contours show the constraints from
Planck TT,TE,EE+lowP+BAO. Models with Ne↵ < 3.046 (left
of the solid vertical line) require photon heating after neutrino
decoupling or incomplete thermalization. Dashed vertical lines
correspond to specific fully-thermalized particle models, for ex-
ample one additional massless boson that decoupled around the
same time as the neutrinos (�Ne↵ ⇡ 0.57), or before muon
annihilation (�Ne↵ ⇡ 0.39), or an additional sterile neutrino
that decoupled around the same time as the active neutrinos
(�Ne↵ ⇡ 1).

A larger range of neutrino masses was found by Beutler et al.
(2014) using a combination of RSD, BAO, and weak lens-
ing information. The tension between the RSD results and
base ⇤CDM was subsequently reduced following the analysis
of Samushia et al. (2014), as shown in Fig. 17. Galaxy weak
lensing and some cluster constraints remain in tension with base
⇤CDM, and we discuss possible neutrino resolutions of these
problems in Sect. 6.4.4.

Another way of potentially improving neutrino mass con-
straints is to use measurements of the Ly↵ flux power spectrum
of high-redshift quasars. Palanque-Delabrouille et al. (2014)
have recently reported an analysis of a large sample of quasar
spectra from the SDSSIII/BOSS survey. When combining their
results with 2013 Planck data, these authors find a bound

P
m⌫ <

0.15 eV (95 % CL), compatible with the results presented in this
section.

An exciting future prospect is the possible direct detection
of non-relativistic cosmic neutrinos by capture on tritium, for
example with the PTOLEMY experiment (Cocco et al. 2007;
Betts et al. 2013; Long et al. 2014). Unfortunately, for the mass
range

P
m⌫ < 0.23 eV preferred by Planck, detection with the

first generation experiment will be di�cult.

6.4.2. Constraints on Ne↵

Dark radiation density in the early Universe is usually parame-
terized by Ne↵ , defined so that the total relativistic energy density
in neutrinos and any other dark radiation is given in terms of the

photon density ⇢� at T ⌧ 1 MeV by

⇢ = Ne↵
7
8

 
4

11

!4/3

⇢�. (59)

The numerical factors in this equation are included so that
Ne↵ = 3 for three standard model neutrinos that were thermal-
ized in the early Universe and decoupled well before electron-
positron annihilation. The standard cosmological prediction is
actually Ne↵ = 3.046, since neutrinos are not completely de-
coupled at electron-positron annihilation and are subsequently
slightly heated (Mangano et al. 2002).

In this section we focus on additional density from mass-
less particles. In addition to massless sterile neutrinos, a variety
of other particles could contribute to Ne↵ . We assume that the
additional massless particles are produced well before recombi-
nation, and neither interact nor decay, so that their energy den-
sity scales with the expansion exactly like massless neutrinos.
An additional �Ne↵ = 1 could correspond to a fully thermal-
ized sterile neutrino that decoupled at T <⇠ 100 MeV; for ex-
ample any sterile neutrino with mixing angles large enough to
provide a potential resolution to short-baseline reactor neutrino
oscillation anomalies would most likely thermalize rapidly in the
early Universe. However, this solution to the neutrino oscillation
anomalies requires approximately 1 eV sterile neutrinos, rather
than the massless case considered in this section; exploration of
the two parameters Ne↵ and

P
m⌫ is reported in Sect. 6.4.3. For

a review of sterile neutrinos see Abazajian et al. (2012).
More generally the additional radiation does not need to be

fully thermalized, for example there are many possible models
of non-thermal radiation production via particle decays (see e.g.,
Hasenkamp & Kersten 2013; Conlon & Marsh 2013). The radi-
ation could also be produced at temperatures T > 100 MeV,
in which case typically �Ne↵ < 1 for each additional species,
since heating by photon production at muon annihilation (at
T ⇡ 100 MeV) decreases the fractional importance of the ad-
ditional component at the later times relevant for the CMB. For
particles produced at T � 100 MeV the density would be di-
luted even more by numerous phase transitions and particle anni-
hilations, and give �Ne↵ ⌧ 1. Furthermore, if the particle is not
fermionic, the factors entering the entropy conservation equation
are di↵erent, and even thermalized particles could give specific
fractional values of �Ne↵ . For example Weinberg (2013) consid-
ers the case of a thermalized massless boson, which contributes
�Ne↵ = 4/7 ⇡ 0.57 if it decouples in the range 0.5 MeV < T <
100 MeV like the neutrinos, or �Ne↵ ⇡ 0.39 if it decouples at
T > 100 MeV (before the photon production at muon annihila-
tion, hence undergoing fractional dilution).

In this paper we follow the usual phenomenological ap-
proach where we constrain Ne↵ as a free parameter with a wide
flat prior, though we comment on a few discrete cases separately
below. Values of Ne↵ < 3.046 are less well motivated, since they
would require the standard neutrinos to be incompletely thermal-
ized or additional photon production after neutrino decoupling,
but we include this range for completeness.

Figure 31 shows that Planck is entirely consistent with the
standard value Ne↵ = 3.046. However, a significant density of
additional radiation is still allowed, with the (68 %) constraints

Ne↵ = 3.13 ± 0.32 Planck TT+lowP ; (60a)
Ne↵ = 3.15 ± 0.23 Planck TT+lowP+BAO ; (60b)
Ne↵ = 2.99 ± 0.20 Planck TT,TE,EE+lowP ; (60c)
Ne↵ = 3.04 ± 0.18 Planck TT,TE,EE+lowP+BAO . (60d)
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need to invoke mechanism to prevent equilibration of sterile neutrino
(e.g., large L-asymmetry, large interactions in the dark sector) 
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Summary

•3-flavour properties:  
CP phase: values of π < δ < 2π preferred over 0 < δ < π 
CP conservation excluded at 2σ CL  
hints for normal mass ordering emerging (not yet significant)

•non-standard interactions:  
COHERENT result excludes LMA-dark degeneracy 
limits at few % level (few exceptions depending on flavour)

•eV scale sterile neutrinos:  
reactor anomaly still around — progress expected soon 
sterile neutrino explanation of LSND keeps getting worse  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supplementary slides
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CP phase — 2016 data

•best fit at δCP ≈ 270°

• correlations with θ23

•CP conservation allowed at 70% CL (NO), 97% CL (IO)

•δCP ≈ 90° disfavoured with Δ𝝌2
 ≈ 6 (14) for NO (IO)
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Figure 2. Global 3⌫ oscillation analysis. The red (blue) curves correspond to Normal (Inverted)
Ordering. The normalization of reactor fluxes is left free and data from short-baseline reactor
experiments are included. Note that as atmospheric mass-squared splitting we use �m
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31 for NO

and �m
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CP - MO contributions
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Minor tension between solar neutrinos and KamLAND
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Figure 5. Left: Allowed parameter regions (at 1�, 90%, 2�, 99% and 3� CL for 2 dof) from the
combined analysis of solar data for GS98 model (full regions with best fit marked by black star) and
AGSS09 model (dashed void contours with best fit marked by a white dot), and for the analysis of
KamLAND data (solid green contours with best fit marked by a green star) for fixed ✓13 = 8.5�.
Right: ��

2 dependence on �m

2
21 for the same three analyses after marginalizing over ✓12.

for sake of completeness we show in Fig. 5 the quantification of this tension in our present

global analysis. As seen in the figure, the best fit value of �m

2

21

of KamLAND lays at the

boundary of the 2� allowed range of the solar neutrino analysis.

Also for illustration of the independence of these results with respect to the solar

modeling, the solar neutrino regions are shown for two latest versions of the Standard

Solar Model, namely the GS98 and the AGSS09 models [61] obtained with two di↵erent

determinations of the solar abundances [62].

3.2 �m

2

3`

determination in LBL accelerator experiments versus reactors

Figure 6 illustrates the contribution to the present determination of�m

2

3`

from the di↵erent

data sets. In the left panels we focus on the determination from long baseline experiments,

which is mainly from ⌫

µ

disappearance data. We plot the 1� and 2� allowed regions (2 dof)

in the dominant parameters �m

2

3`

and ✓

23

. As seen in the figure, although the agreement

between the di↵erent experiments is reasonable, some “tension” starts to appear in the

determination of both parameters among the LBL accelerator experiments. In particular we

see that the recent results from NO⌫A, unlike those from T2K, favor a non-maximal value

of ✓
23

. It is important to notice that in the context of 3⌫ mixing the relevant oscillation

probabilities for the LBL accelerator experiments also depend on ✓

13

(and on the ✓

12

and �m

2

21

parameters which are independently well constrained by solar and KamLAND

data). To construct the regions plotted in the left panels of Fig. 6, we adopt the procedure

– 9 –
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• strong dependence on true ordering and δCP

• 3σ possible for the most favourable combinations

MO sensitivity of existing experiments
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FIG. 12: The left (right) panel shows the median sensitivity in number of sigmas for rejecting the IO

(NO) if the NO (IO) is true for di↵erent facilities as a function of the date. The width of the bands

correspond to di↵erent true values of the CP phase � for NO⌫A and LBNE, di↵erent true values

of ✓23 between 40� and 50� for INO and PINGU, and energy resolution between 3%
p
1 MeV/E

and 3.5%
p
1 MeV/E for JUNO. For the long baseline experiments, the bands with solid (dashed)

contours correspond to a true value for ✓23 of 40� (50�). In all cases, octant degeneracies are fully

searched for.

plots in some detail.
In order to keep the number of MC simulations down to a feasible level, we use the

Gaussian approximation whenever it is reasonably justified. As we have shown in Sec. 4,
this is indeed the case for PINGU, INO, and JUNO. With respect to the LBL experiments,
even though we have seen that the agreement with the Gaussian case is actually quite good
(see Fig. 11), there are still some deviations, in particular in the case of NO⌫A. Consequently,
in this case we have decided to use the results from the full MC simulation whenever possible.
The results for the NO⌫A experiment are always obtained using MC simulations, while in the
case of LBNE-10 kt the results from a full MC are used whenever the number of simulations
does not have to exceed 4⇥105 (per value of �). As was mentioned in the caption of Fig. 11,
this means that, in order to reach sensitivities above ⇠ 4� (for the median experiment),
results from the full MC cannot be used. In these cases, we will compute our results using
the Gaussian approximation instead. As mentioned in App. A, the approximation is expected
to be quite accurate precisely for large values of T0. Finally, for LBNE-34 kt, all the results
have to be computed using the Gaussian approximation, since the median sensitivity for this
experiment reaches the 4� bound already for one year of exposure only, even for the most
unfavorable values of �.

For each experiment, we have determined the parameter that has the largest impact on
the results, and we draw a band according to it to show the range of sensitivities that should
be expected in each case. Therefore, we want to stress that the meaning of each band may
be di↵erent, depending on the particular experiment that is considered. In the case of long
baseline experiments (NO⌫A, LBNE-10 kt and LBNE-34 kt), the results mainly depend on

25
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MO - compilation of upcoming experiments

Blennow, Coloma, Huber, TS, 1311.1822 [not shown: ORCA and HyperK (atm)]


