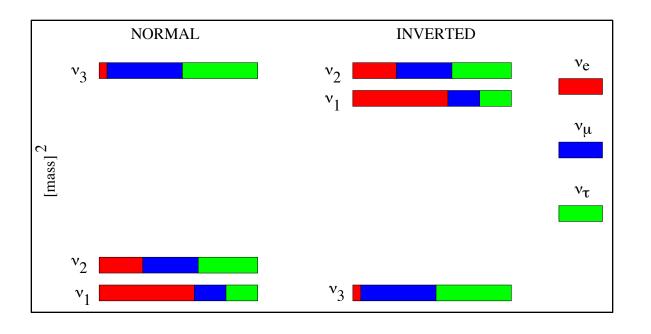
Neutrino Properties

Thomas Schwetz

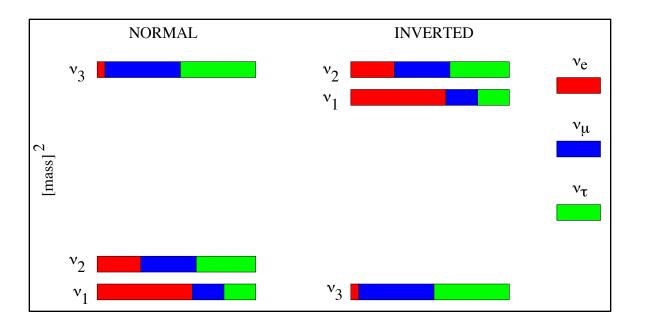
COSMO 2017, Aug. 27 - Sept. 1, 2017, Paris, France


Outline

- Three-flavour neutrino parameters
- Beyond Standard Model neutrino interactions
- Hints for sterile neutrinos at the eV scale

3-neutrino parameters

- 3 masses: Δm_{21}^2 , Δm_{31}^2 , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$
- 3 phases (1 Dirac, 2 Majorana)

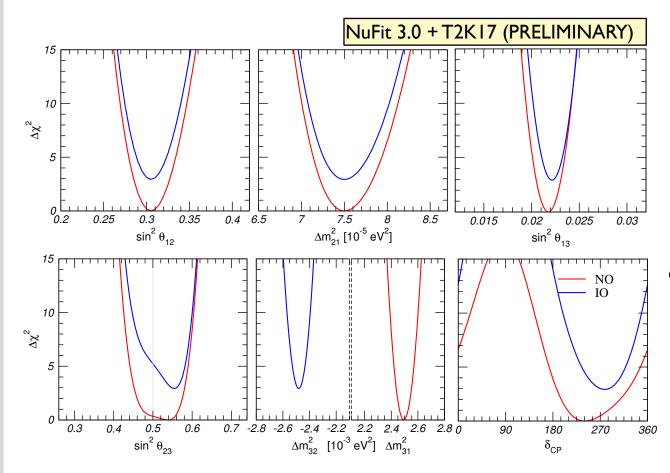


3-neutrino parameters

- 3 masses: Δm^2_{21} , Δm^2_{31} , m_0
- 3 mixing angles $\theta_{12} \theta_{13} \theta_{23}$

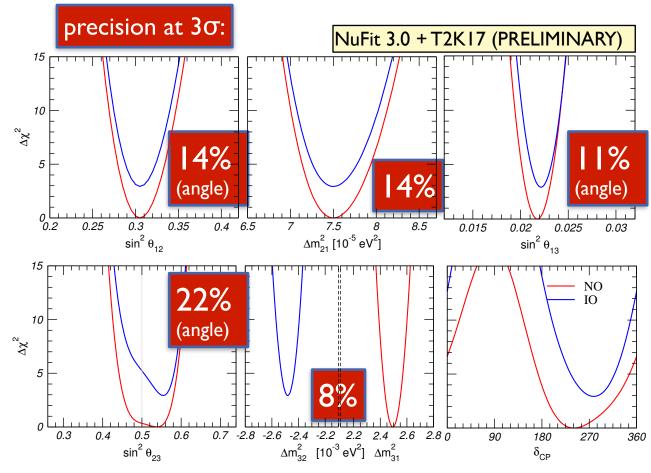
neutrino oscillations

• 3 phases (| Dirac, 2 Majorana)



• NuFit: <u>www.nu-fit.org</u>

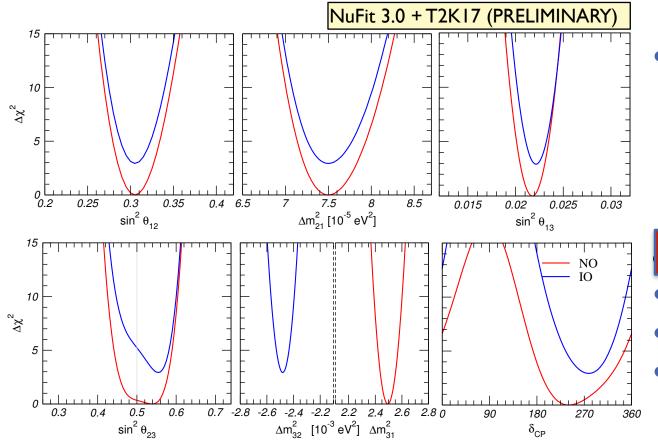
- MC Gonzalez-Garcia, M Maltoni, et al
- updated global fit results including 2-dim chi² maps
- last release NuFit-3.0 Esteban et al., 1611.01514
 NuFit-3.1 in preparation
- this talk: preliminary results from NuFit-3.0 + summer 2017 results from T2K


 well determined parameters

$$\theta_{12} \theta_{13} \Delta m_{21}^2 |\Delta m_{31}^2|$$

open issues:

- θ₂₃: octant/maximality
- mass ordering
- δ_{CP} : preference for 180° < δ_{CP} < 360°


 well determined parameters

$$\theta_{12} \theta_{13} \Delta m_{21}^2 |\Delta m_{31}^2|$$

open issues:

- θ₂₃: octant/maximality
- mass ordering
- δ_{CP} : preference for 180° < δ_{CP} < 360°

 well determined parameters

$$\theta_{12} \theta_{13} \Delta m_{21}^{2} |\Delta m_{31}^{2}|$$

open issues:

- θ₂₃: octant/maximality
- mass ordering
- δ_{CP} : preference for 180° < δ_{CP} < 360°

Leptonic CP violation

Leptonic CP violation will manifest itself in a difference of the vacuum oscillation probabilities for neutrinos and anti-neutrinos Cabibbo, 1977; Bilenky, Hosek, Petcov, 1980, Barger, Whisnant, Phillips, 1980

 $P_{
u_{lpha} o
u_{eta}} - P_{ar{
u}_{lpha} o ar{
u}_{eta}} \propto J \,, \qquad J = |\mathrm{Im}(U_{lpha 1} U_{lpha 2}^* U_{eta 1}^* U_{eta 2})|$

J: leptonic analogue to Jarlskog-invariant Jarlskog, 1985

standard parameterization: $J = s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2 \sin \delta \equiv J^{\max} \sin \delta$

NuFit 3.0:

$$J_{\rm CP}^{\rm max} = 0.0329 \pm 0.0007$$

compare with Jarlskog invariant in the quark sector:

 $J_{\rm CKM} = (3.06^{+0.21}_{-0.20}) \times 10^{-5}$

► CPV for leptons might be a factor 1000 larger than for quarks

• OBS: for quarks we know J, for leptons only J^{\max} (do not know δ !)

Leptonic CP violation

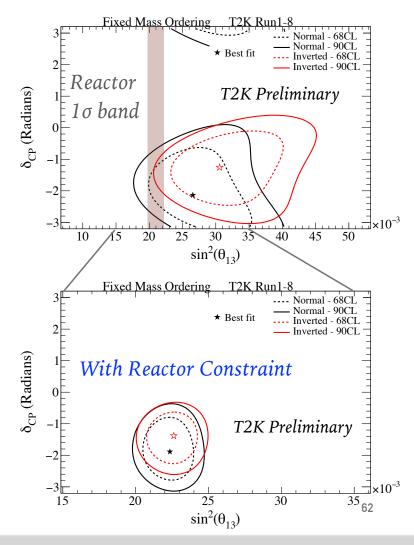
Comment on Leptogenesis:

- CPV is a necessary condition for Leptogenesis
- CPV observable in oscillations can be related to Leptogenesis only within a specific model
- observation of CPV cannot be a "prove" of Leptogenesis — only "circumstantial evidence"

Dirac CP phase — recent T2K results

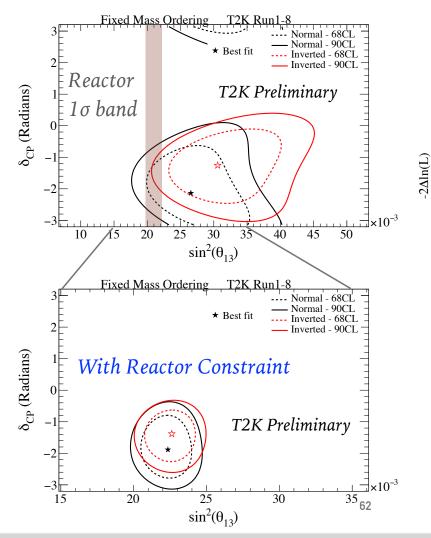
M. Hartz, KEK colloquium, August 4, 2017

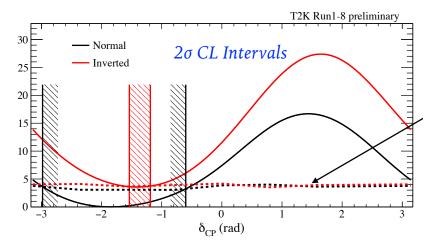
Accumulated 14.7×10^{20} protons-on-target (POT) in neutrino mode and 7.6×10^{20} POT in antineutrino mode - full data set presented here


► 29% of the approved T2K POT

		Predicted Rates			Observed	
	Sample	δ_{cp} =- $\pi/2$	$\delta_{cp} = 0$	$\delta_{cp} = \pi/2$	$\delta_{cp} = \pi$	Rates
neutrino	CCQE 1-Ring e-like FHC	73.5	61.5	49.9	62.0	74
neutrino	$\text{CC1}\pi$ 1-Ring e-like FHC	6.92	6.01	4.87	5.78	15
anti-neutrino	CCQE 1-Ring e-like RHC	7.93	9.04	10.04	8.93	7
neutrino	CCQE 1-Ring $\mu\text{-like}$ FHC	267.8	267.4	267.7	268.2	240
anti-neutrino	CCQE 1-Ring $\mu\text{-like}$ RHC	63.1	62.9	63.1	63.1	68

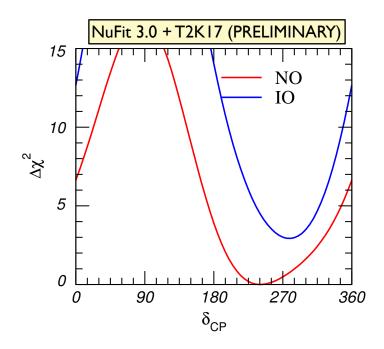
Dirac CP phase — recent T2K results


M. Hartz, KEK colloquium, August 4, 2017



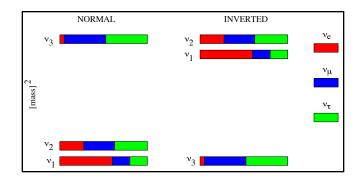
Dirac CP phase — recent T2K results

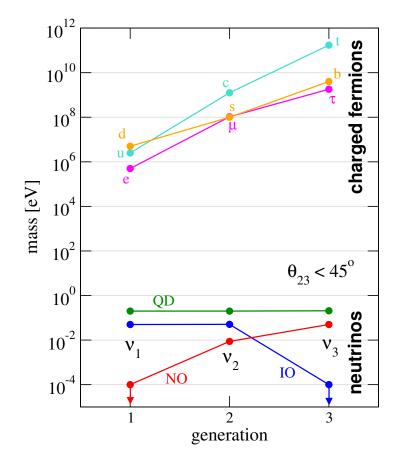
M. Hartz, KEK colloquium, August 4, 2017

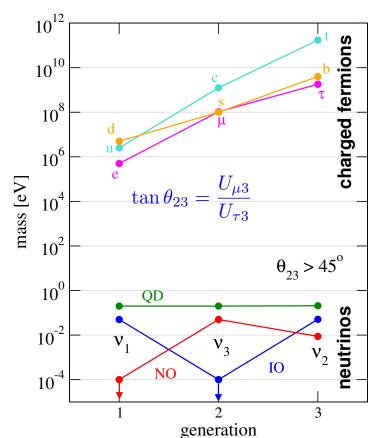


CP conserving values 0 and π are outside the 2σ CL intervals!

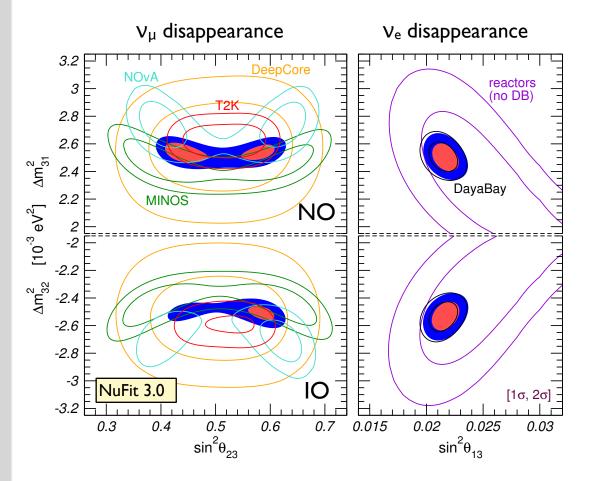
Dirac CP phase — global fit

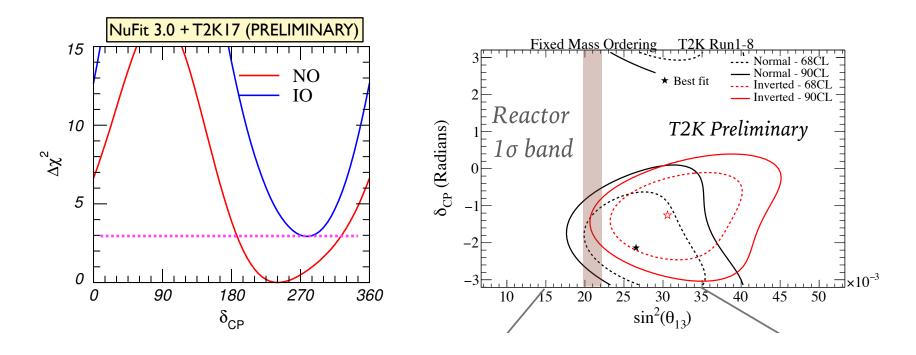



- best fit at $\delta_{CP}\approx 240^\circ$
- CP conservation allowed with $\Delta \chi^2 \approx 4$
- region between 16° and 150° disfavoured with $\Delta \chi^2 > 9$



Neutrino mass spectrum




Entering the era of redundancy

- consistent results in V_e and V_{μ} disappearance searches
- several consistent results in ν_µ disappearance

Mass ordering

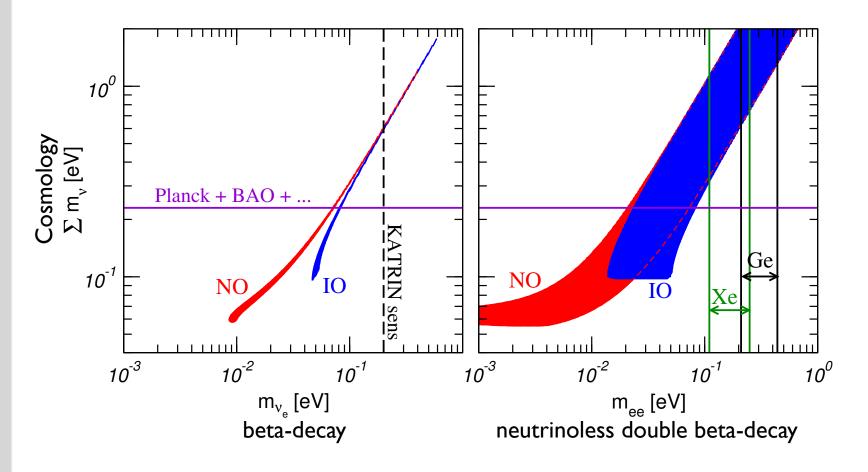
• Preference for NO with $\Delta \chi^2 \approx 3$ • mostly driven by T2K vs Reactor

Three flavor v oscillation analysis Super-K atm.v only Preliminary 20 **Inverted Hierarchy Normal Hierarchy** 15 15 15 $\Delta\chi^2$ 10 10 99% 5 5 95% 95% 90% 90% 0.001 0.2 0.4 0.8 0.005 0.6 0.002 0.003 0.004 $\sin^2 \theta_{23}$ $|\Delta m_{32}^2|, |\Delta m_{13}^2| eV^2$ δ_{cp} δ_{cp} θ_{23} Fit (517 d.o.f.) $\Delta m_{23} (x10^{-3})$ χ2 **Normal Hierarchy** 4.189 2.5 571.74 0.587 **Inverted Hierarchy** 576.08 4.190.575 2.5

- $\chi^2_{NH} \chi^2_{IH} = -4.3$ (-3.1 expected)
- The probability to obtain $\Delta \chi 2$ of -4.3 or less for IH is 0.03 (sin² θ_{23} =0.6), 0.007 (sin² θ_{23} =0.4). NH hypothesis : 0.45 (sin² θ_{23} =0.6)
- θ_{13} fixed to PDG average and its uncertainty is included as a systematic error².

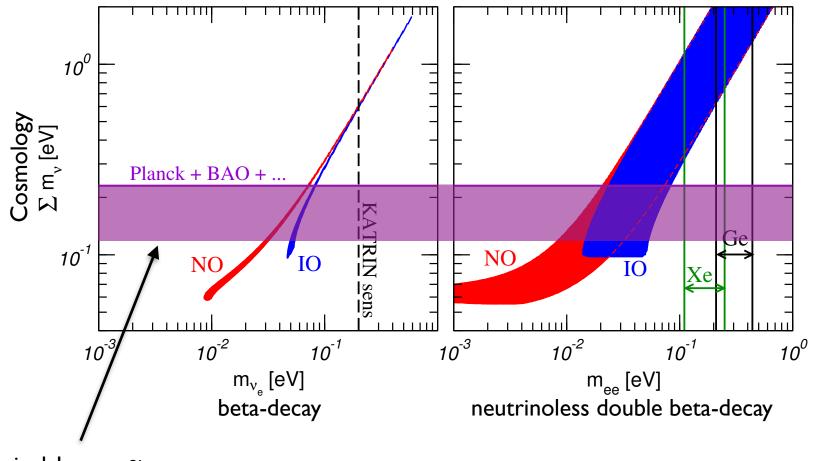
SK coll., talk by J. Kameda, NuFact 2016, Vietnam

Absolute neutrino mass


Three ways to measure absolute neutrino mass: sensitive to different quantities

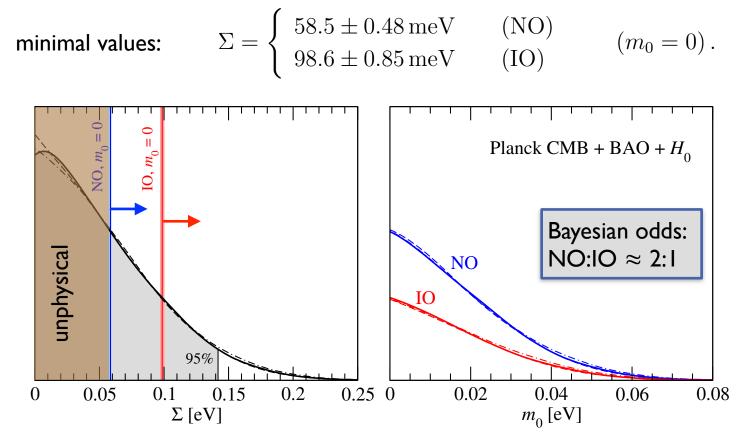
- ▶ Neutrinoless double beta-decay: (A, Z) → (A, Z + 2) + 2e⁻ (with caveats: lepton number violation) $m_{ee} = |\sum_{i} U_{ei}^{2} m_{i}|$
- Endpoint of beta spectrum: ${}^{3}H \rightarrow {}^{3}He + e^{-} + \bar{\nu}_{e}$ (experimentally challenging \rightarrow KATRIN) $m_{\beta}^{2} = \sum_{i} |U_{ei}^{2}|m_{i}^{2}$
- Cosmology

(with caveats: cosmological model/data selection) $\sum_{i} m_{i}$



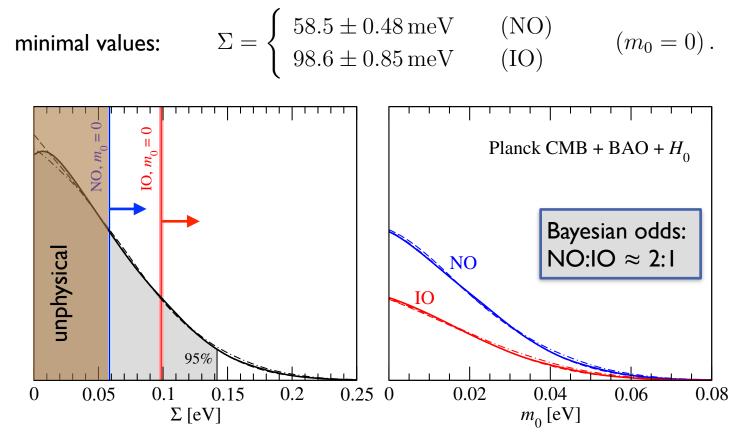
Absolute neutrino mass

Absolute neutrino mass



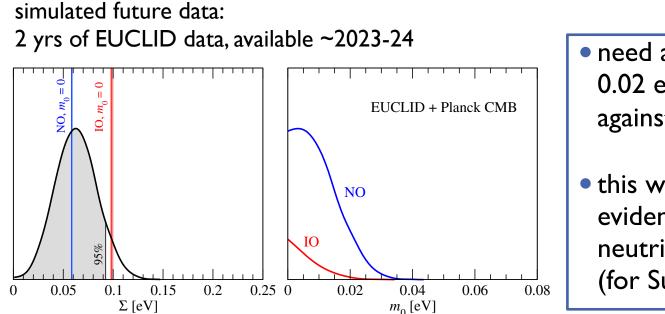
incl. Lyman-α Baur et al., 1506.05976

Excluding inverted ordering with cosmology?


Hannestad, Schwetz, 1606.04691

Excluding inverted ordering with cosmology?

Hannestad, Schwetz, 1606.04691



"Strong evidence" for NO claimed in Simpson et al. 1703.03425 \rightarrow be aware of Bayesian priors [TS et al. 1703.04585]

Excluding inverted ordering with cosmology?

Hannestad, Schwetz, 1606.04691

minimal values:
$$\Sigma = \begin{cases} 58.5 \pm 0.48 \text{ meV} & (\text{NO}) \\ 98.6 \pm 0.85 \text{ meV} & (\text{IO}) \end{cases}$$
 $(m_0 = 0).$

 need accuracy better than 0.02 eV to exclude 0.1 eV against 0.06 eV at 2σ

 this would imply a 3σ evidence for non-zero neutrino mass (for Sum = 0.06 eV)

Neutrino properties beyond 3-flavour oscillations

Neutrino properties beyond 3-flavour oscillations

three-flavour scenario very robust

 most extensions lead to sub-leading perturbations ex.: non-unitarity, eV-scale sterile neutrinos

 counter example: non-standard interactions (until last month!)

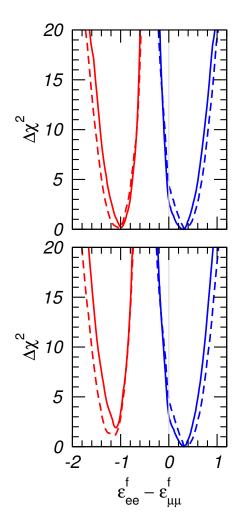
Non-standard neutrino interactions

assume presence of NC-like dim-6 effective operators:

$$H_{\rm NSI} = \frac{G_F}{\sqrt{2}} \, \bar{\nu}_{\alpha} \gamma_{\mu} (1 - \gamma_5) \nu_{\beta} \, \sum_f \bar{f} \gamma^{\mu} \epsilon^f_{\alpha\beta} f$$

• $\epsilon^{f}_{\alpha\beta}$ parametrizes strength of NSI relative to G_{F}

- restrict to vector-type interactions (matter potential)
- ▶ NSI can be non-universal ($\alpha = \beta$) or flavour-changing ($\alpha \neq \beta$)
- in general not directly related to neutrino mass (dim-6) but generically expected at some level

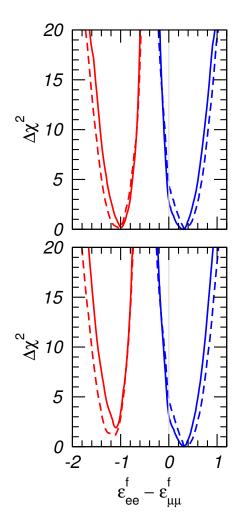


Gonzalez-Garcia, Maltoni, 1307.3092

		90% CL		
Param.	best-fit	LMA	$LMA \oplus LMA-D$	
$\varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu}$	+0.298	[+0.00, +0.51]	\oplus $[-1.19, -0.81]$	
$\varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]	
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]	
$\varepsilon^{u}_{e au}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]	
$\varepsilon^u_{\mu au}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]	
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]	
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]	
$\varepsilon^{d}_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]	
$\varepsilon^{\dot{d}}_{e au}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]	
$\varepsilon^d_{\mu au}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]	

limits of few %,

```
exceptions: ε<sub>e</sub>, ε<sub>e</sub>-ε<sub>μμ</sub>
```

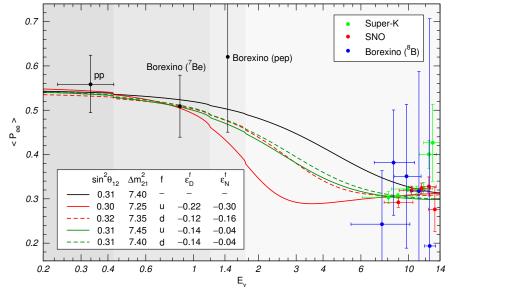



Gonzalez-Garcia, Maltoni, 1307.3092

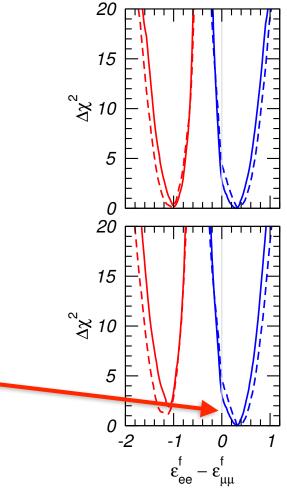
		900	% CL
Param.	best-fit	LMA	$LMA \oplus LMA-D$
$\varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu}$	+0.298	[+0.00, +0.51]	$\oplus \left[-1.19, -0.81 ight]$
$\varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.03, +0.03]
$\varepsilon^{u}_{e\mu}$	-0.021	[-0.09, +0.04]	[-0.09, +0.10]
$\varepsilon^{u}_{e au}$	+0.021	[-0.14, +0.14]	[-0.15, +0.14]
$\varepsilon^{u}_{\mu\tau}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]
$\varepsilon^d_{ee} - \varepsilon^d_{\mu\mu}$	+0.310	[+0.02, +0.51]	\oplus [-1.17, -1.03]
$\varepsilon^d_{\tau\tau} - \varepsilon^d_{\mu\mu}$	+0.001	[-0.01, +0.03]	[-0.01, +0.03]
$\varepsilon^d_{e\mu}$	-0.023	[-0.09, +0.04]	[-0.09, +0.08]
$\varepsilon^{\dot{d}}_{e au}$	+0.023	[-0.13, +0.14]	[-0.13, +0.14]
$\varepsilon^d_{\mu au}$	-0.001	[-0.01, +0.01]	[-0.01, +0.01]

limits of few %,

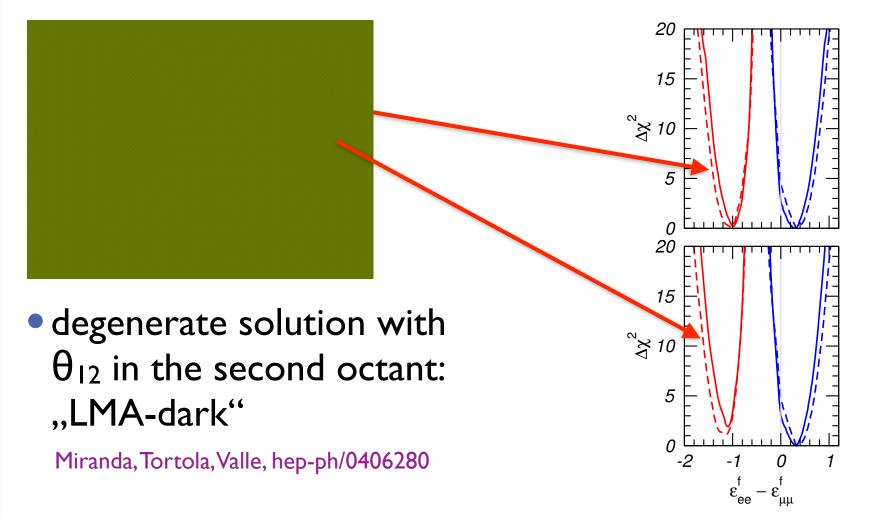
exceptions: ε_{eτ}, ε_{ee}-ε_{µµ}



Gonzalez-Garcia, Maltoni, 1307.3092

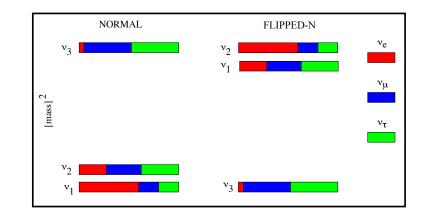


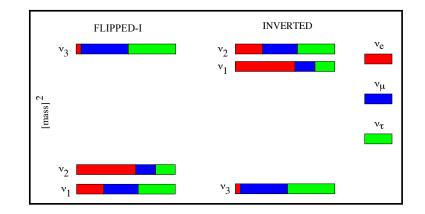
Gonzalez-Garcia, Maltoni, 1307.3092


 slightly improved fit to solar neutrino data

LMA-dark degeneracy

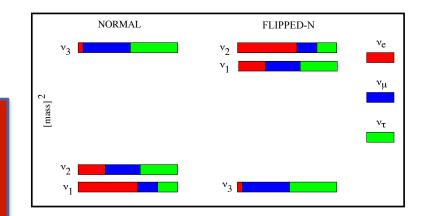
Gonzalez-Garcia, Maltoni, 1307.3092

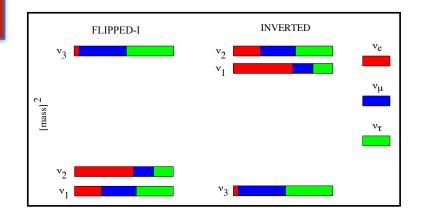




LMA-dark degeneracy

 degenerate solution with θ₁₂ in the second octant: "LMA-dark"

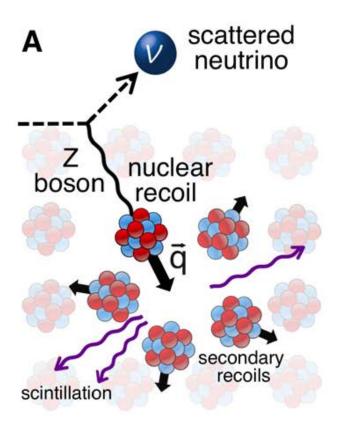

• related to a sign-flip in Δm^2_{31} Coloma, Schwetz, 16



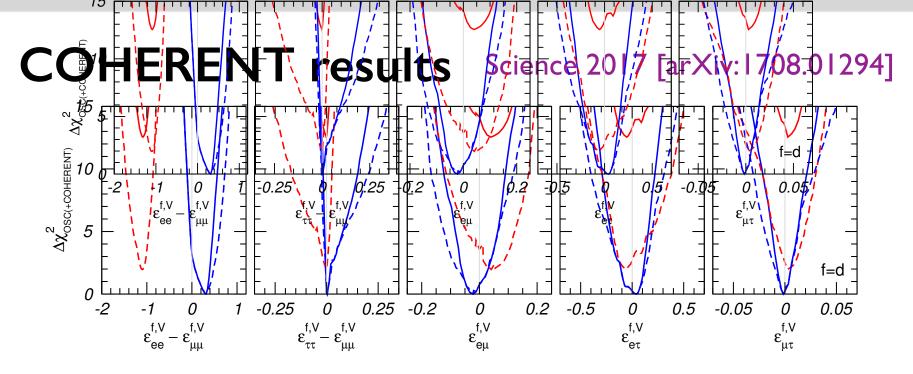
LMA-dark degeneracy

degeneracy makes determination of mass ordering by oscillation experiments impossible!

 degenerate solution with θ₁₂ in the second octant: ,,LMA-dark"

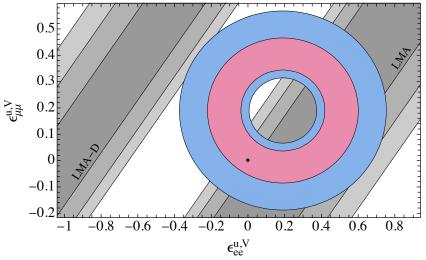


• related to a sign-flip in Δm^2_{31} Coloma, Schwetz, 16



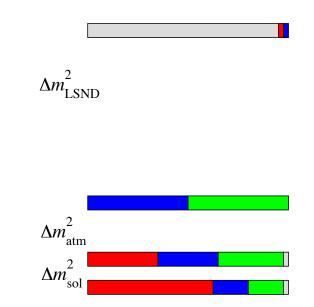
COHERENT results Science 2017 [arXiv:1708.01294]

- observation of coherent neutrino-nucleus scattering at 6.7σ at CsI[Na] detector
- neutrinos from stopped pion source at Oak Ridge NL
- I42 events observed, in agreement with Standard Model



 COHERENT data exclude LMA-D degeneracy at more than 3σ

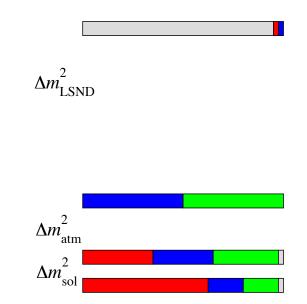
Coloma, Gonzalez-Garcia, Maltoni, Schwetz 1708.02899



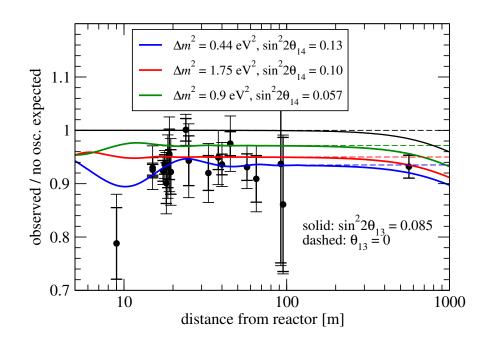
Hints for neutrino mass state at eV scale

few hints at $\sim 3\sigma$

- reactor anomaly ($\bar{\nu}_e$ disappearance)
- Gallium anomaly ($\bar{\nu}_e$ disappearance)
- LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$
- MiniBooNE $(\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$

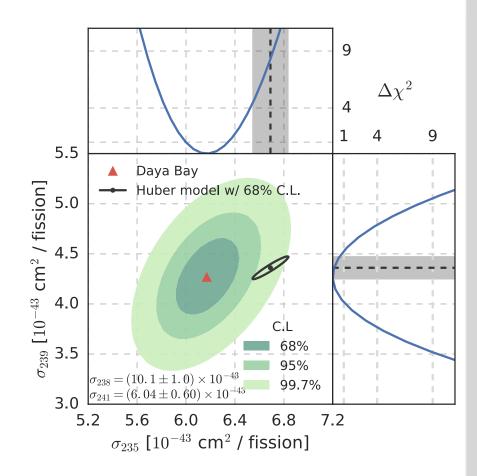


Hints for neutrino mass state at eV scale


few hints at $\sim 3\sigma$

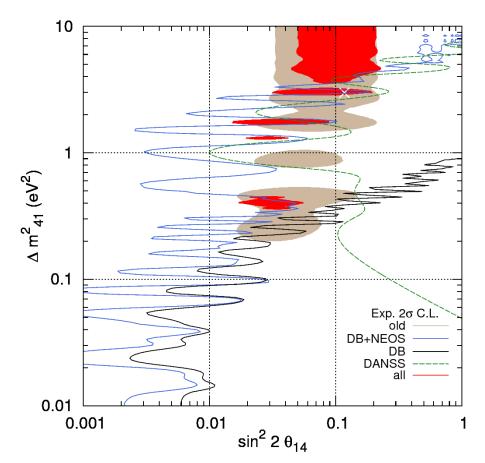
- reactor anomaly ($\bar{\nu}_e$ disappearance)
- Gallium anomaly ($\bar{\nu}_e$ disappearance)
- LSND ($\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance)
- MiniBooNE $(\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$

Reactor anomaly


 predicted neutrino fluxes from nuclear reactors are larger than observed Huber 11, Mueller et al 11

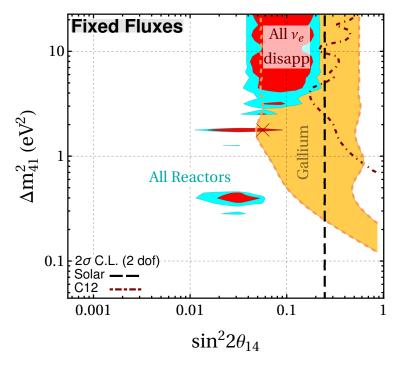
- can be explained by oscillations at eV scale
- calculations depend on difficult nuclear physics

Recent developments on reactor anomaly


- Daya Bay 17 determines flux of 4 leading isotopes by using time evolution of reactor fuel → ~2.7σ hint for deficit dominated by ²³⁵U (disfavours sterile neutrinos)
- But significance of this result goes down in global analysis of reactor data
 Giunti, Ji, Laveder, Li, Littlejohn, 17;
 Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep

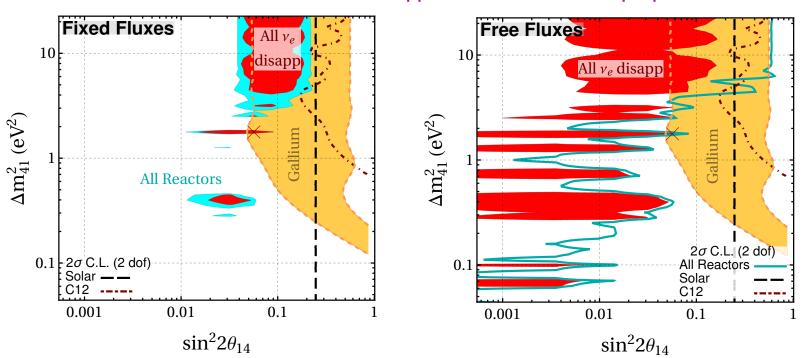
Recent developments on reactor anomaly

- first results from NEOS and DANSS cut into parameter region
- data show "wiggles" consistent between NEOS and DANSS and the anomaly



Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep

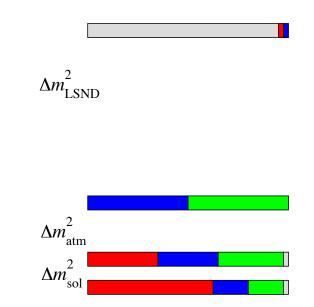
Global data on V_e disappearance


Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep

• significance at slightly below 3σ

Global data on V_e disappearance

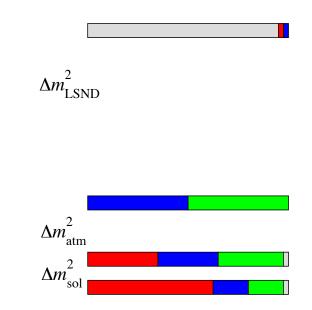
Dentler, Hernandez, Kopp, Maltoni, Schwetz, in prep


- significance at slightly below 3σ
- even for flux-free analysis hint remains at $\sim 2\sigma$

Hints for neutrino mass state at eV scale

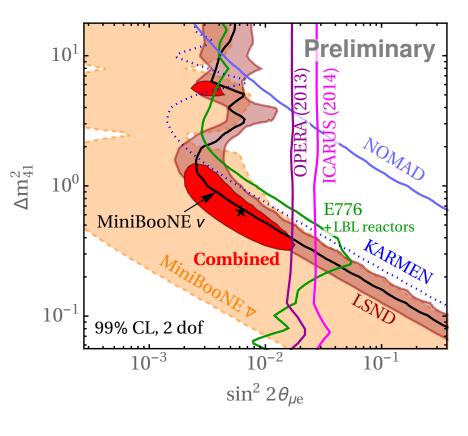
few hints at $\sim 3\sigma$

- reactor anomaly ($\bar{\nu}_e$ disappearance)
- Gallium anomaly ($\bar{\nu}_e$ disappearance)
- LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$
- MiniBooNE $(\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$



Hints for neutrino mass state at eV scale

few hints at $\sim 3\sigma$


- reactor anomaly ($\bar{\nu}_e$ disappearance)
- Gallium anomaly ($\bar{\nu}_e$ disappearance)
- LSND $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$
- MiniBooNE $(\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance})$

Global data on appearance

- •LSND signal at 3.8σ
- MB antineutrino excess (2.8σ) consistent with oscillations
- MB neutrino excess (3.4σ) marginally consistent with osc. (p-value 6.1%)

Dentler, et al, in prep

Fitting all together?

appearance

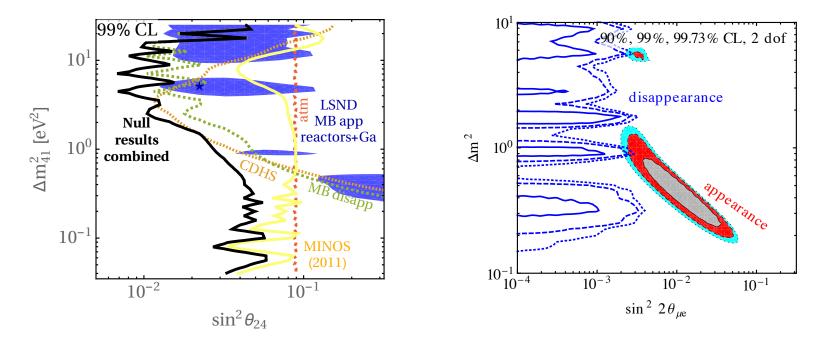
$$P_{\mu e} = \sin^2 2 heta_{\mu e} \sin^2 rac{\Delta m_{41}^2 L}{4E}$$

$$\sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

disappearance ($\alpha = e, \mu$)

$$P_{\alpha\alpha} = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\alpha\alpha} = 4|U_{\alpha4}|^2 (1 - |U_{\alpha4}|^2)^2 (1 - |U_{\alpha$$

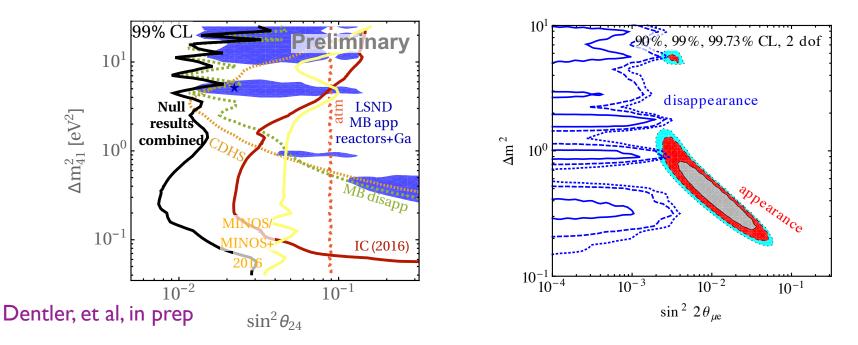
$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$


 $\nu_{\mu} \rightarrow \nu_{e}$ app. signal requires also signal in both, ν_{e} and ν_{μ} disappearance (appearance mixing angle quadratically suppressed)

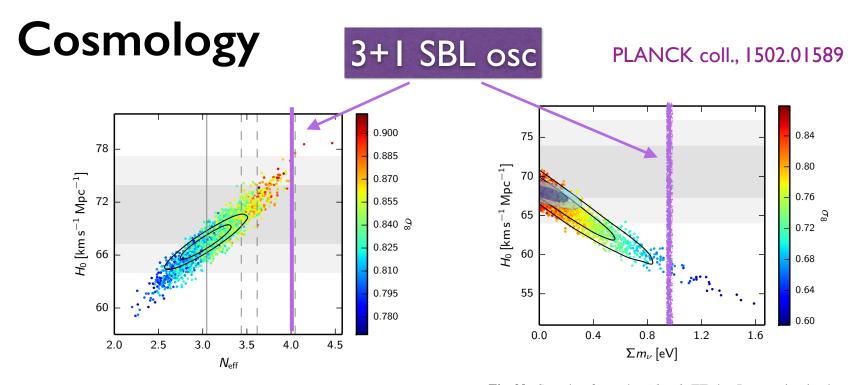
|²)

Fitting all together?

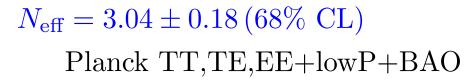
non-observation of ν_{μ} disappearance leads to tension between appearance and disappearance data



consistency of appearance vs disappearance $\chi^2_{PG} = 18/2$, $P \approx 10^{-4}$ Kopp, Machado, Maltoni, Schwetz, 1303.3011


Fitting all together?

non-observation of ν_{μ} disappearance leads to tension between appearance and disappearance data



consistency of appearance vs disappearance $\chi^2_{PG} = 18/2$, $P \approx 10^{-4}$ tension is expected to become even more severe

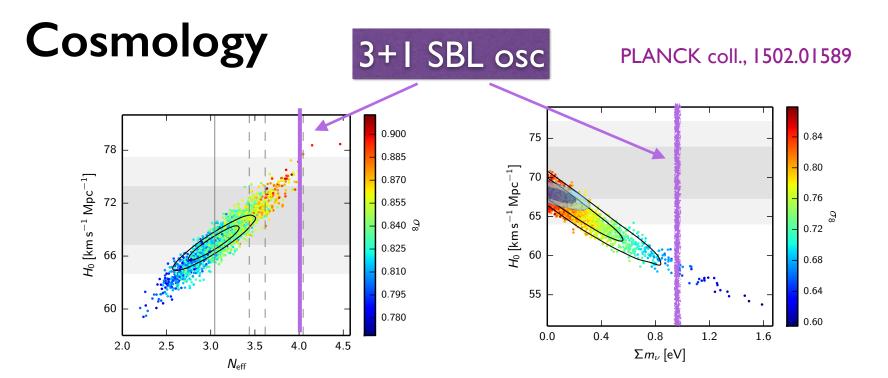

Fig. 31. Samples from *Planck* TT+lowP chains in the $N_{\text{eff}}-H_0$ plane, colour-coded by σ_8 . The grey bands show the constraint $H_0 = (70.6 \pm 3.3) \text{ km s}^{-1}\text{Mpc}^{-1}$ of Eq. (30). Note that higher N_{eff} brings H_0 into better consistency with direct measurements, but increases σ_8 . Solid black contours show the constraints from *Planck* TT,TE,EE+lowP+BAO. Models with $N_{\text{eff}} < 3.046$ (left

Fig. 29. Samples from the *Planck* TT+lowP posterior in the $\sum m_{\nu}-H_0$ plane, colour-coded by σ_8 . Higher $\sum m_{\nu}$ damps the matter fluctuation amplitude σ_8 , but also decreases H_0 (grey bands show the direct measurement $H_0 = (70.6 \pm 3.3)$ km s⁻¹Mpc⁻¹, Eq. 30). Solid black contours show the constraint from *Planck* TT+lowP+lensing (which mildly prefers larger masses), and filled contours show the constraints from *Planck* TT+lowP+lensing+BAO.

 $\sum m_{\nu} < 0.23 \,\mathrm{eV}(95\% \,\mathrm{CL})$ $Planck+BAO+H_0+...$

Fig. 31. Samples from *Planck* TT+lowP chains in the N_{eff} - H_0 plane, colour-coded by σ_8 . The grey bands show the constraint

Fig. 29. Samples from the *Planck* TT+lowP posterior in the $\sum m_{\nu}-H_0$ plane, colour-coded by σ_8 . Higher $\sum m_{\nu}$ damps the matter fluctuation amplitude σ_8 but also decreases H_0

need to invoke mechanism to prevent equilibration of sterile neutrino (e.g., large L-asymmetry, large interactions in the dark sector)

 $N_{\text{eff}} = 3.04 \pm 0.18 (68\% \text{ CL})$ Planck TT,TE,EE+lowP+BAO

$$\sum m_{\nu} < 0.23 \,\mathrm{eV}(95\% \,\mathrm{CL})$$

 $Planck+BAO+H_0+...$

Summary

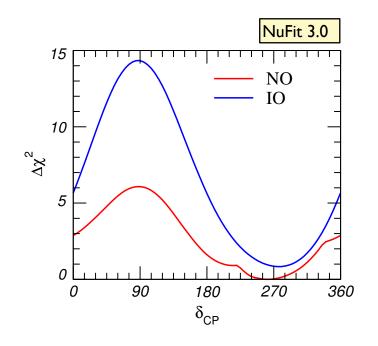
• 3-flavour properties:

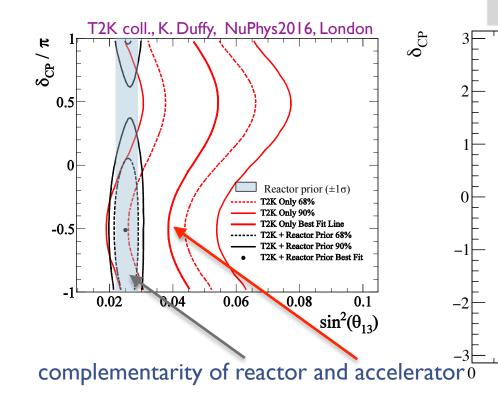
CP phase: values of $\pi < \delta < 2\pi$ preferred over $0 < \delta < \pi$ CP conservation excluded at 2σ CL hints for normal mass ordering emerging (not yet significant)

• non-standard interactions:

COHERENT result excludes LMA-dark degeneracy limits at few % level (few exceptions depending on flavour)

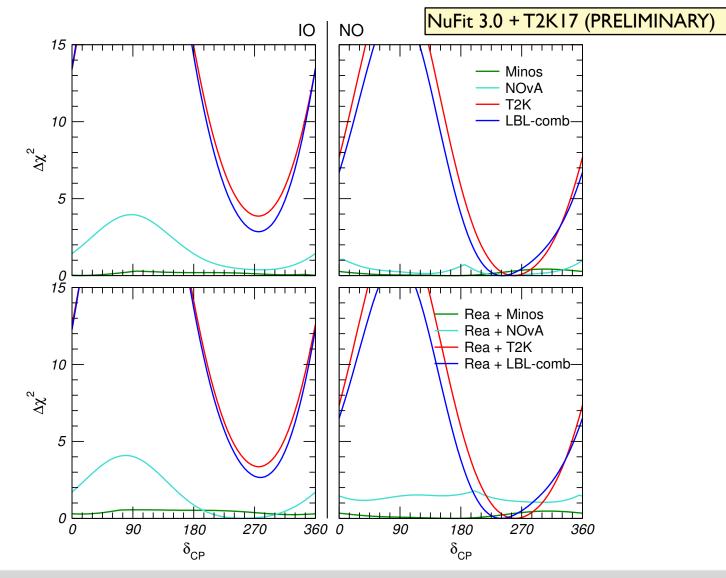
• eV scale sterile neutrinos:


reactor anomaly still around — progress expected soon sterile neutrino explanation of LSND keeps getting worse

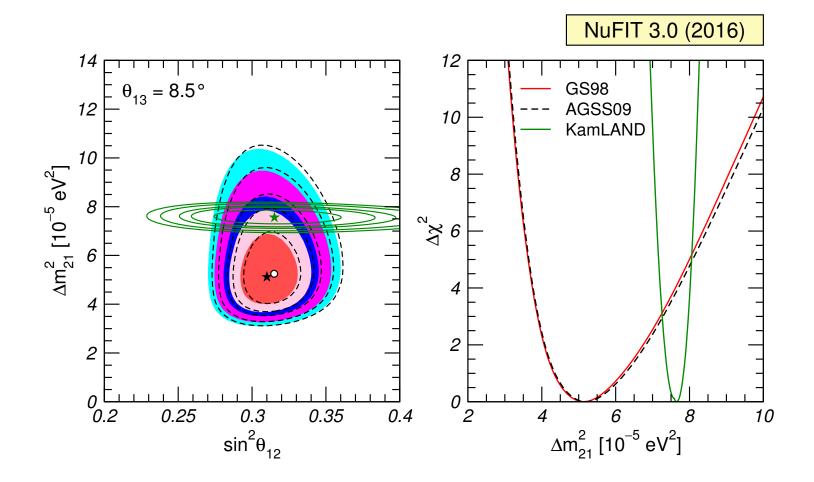


supplementary slides

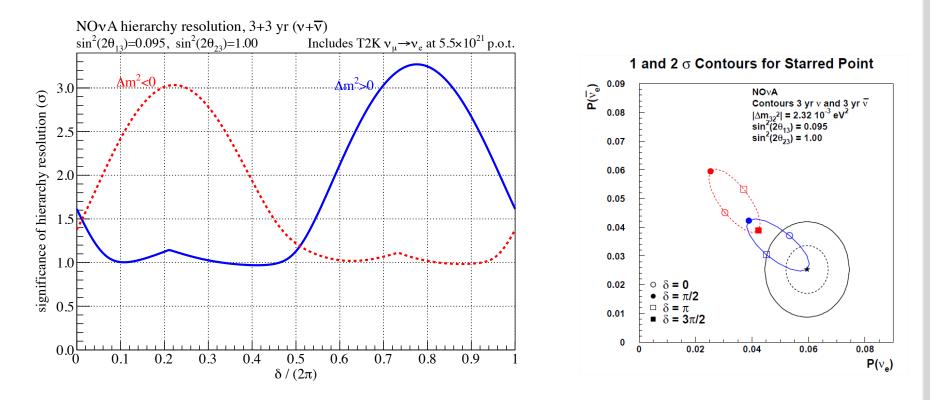
CP phase — 2016 data



- best fit at $\delta_{CP}\approx 270^\circ$
- correlations with θ_{23}
- CP conservation allowed at 70% CL (NO), 97% CL (IO)
- $\delta_{CP} \approx 90^{\circ}$ disfavoured with $\Delta \chi^2 \approx 6$ (14) for NO (IO)



CP - MO contributions


Minor tension between solar neutrinos and KamLAND

MO sensitivity of existing experiments

strong dependence on true ordering and δ_{CP} 3σ possible for the most favourable combinations

http://www-nova.fnal.gov/plots_and_figures/plots_and_figures.html

MO - compilation of upcoming experiments

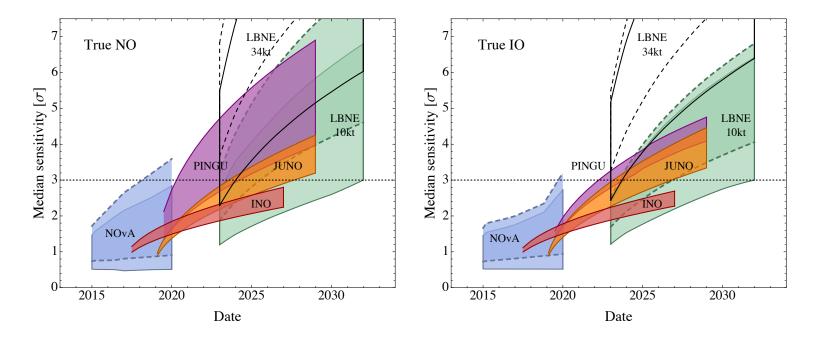


FIG. 12: The left (right) panel shows the median sensitivity in number of sigmas for rejecting the IO (NO) if the NO (IO) is true for different facilities as a function of the date. The width of the bands correspond to different true values of the CP phase δ for NO ν A and LBNE, different true values of θ_{23} between 40° and 50° for INO and PINGU, and energy resolution between $3\%\sqrt{1 \text{ MeV}/E}$ and $3.5\%\sqrt{1 \text{ MeV}/E}$ for JUNO. For the long baseline experiments, the bands with solid (dashed) contours correspond to a true value for θ_{23} of 40° (50°). In all cases, octant degeneracies are fully searched for.

[not shown: ORCA and HyperK (atm)] Blennow, Coloma, Huber, TS, 1311.1822

