

UNIVERSITY OF CAMBRIDGE

Cosmological simulations of our Universe Debora Sijacki IoA & KICC Cambridge

Cosmo – 17 Paris August 30th 2017

Cosmological simulations of galaxy and structure formation 2

<u>Cosmological simulations of galaxy and structure formation</u> ³

Provide ab initio physical understanding on all scales

Standard (and less standard) ingredients:

"simple" ACDM assumption
(WDM, SIDM,..., evolving w,..., coupled DM+DE models,...)

Newtonian gravity (dark matter and baryons) (relativistic corrections, modified gravity models,...)

Ideal gas hydrodynamics + collisionless dynamics of stars (conduction, viscosity, MHD,..., stellar collisions, stellar hydro)

► Gas radiative cooling/heating, star & BH formation and feedback (non equilibrium low T cooling, dust, turbulence, GMCs,...)

Reionization in form of an uniform UV background (simple accounting for the local sources,..., full RT on the fly)

Time since the Big Bang: 3.7 billion years

Pure dark matter simulations in ACDM cosmology

Δ

Pure dark matter simulations in ACDM cosmology

Cosmological simulation of a galaxy cluster

CART

8 1 9 7

Arepo

G2-Anarchy

G3-Mart

G3-SPHS

G3-Magneticum

. . .

G3-XStd

8 1 6 1

Hydra

1 a T

G3-PESPH

G3-OWLS DM

G3-MUSIC

. . .

G2-X

Sembolini et al. 2016 (Nifty)

Pure dark matter simulations in ACDM cosmology

Cosmological simulation of a galaxy cluster

Sembolini et al. 2016

<u>Pure dark matter simulations in ACDM cosmology</u>

7

State-of-the-art:

codes well tested and consistent results of independent groups

accuracy in predicting matter power spectrum a few %

Schneider et al. 2015

<u>Pure dark matter simulations in ACDM cosmology</u>

8

State-of-the-art:

codes well tested and consistent results of independent groups
accuracy in predicting matter power spectrum a few %

The importance of baryons

Baryons are directly observable and they affect the underlying dark matter distribution (contraction/expansion/shape/bias, WL,...) => profound implications for cosmology SDSS, BOSS, eBOSS

The importance of baryons

Vast range of spatial scales involved and very complex, non-linear physics \rightarrow SUB-GRID models ("free parameters" constrained by obs)

Cosmic web

10

<u>The importance of baryons</u>

Hydrodynamical modelling

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{F} = 0$$
$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho \boldsymbol{v} \\ \rho e \end{pmatrix} = \begin{pmatrix} \rho \\ \rho \boldsymbol{v} \\ \rho u + \frac{1}{2}\rho \boldsymbol{v}^2 \end{pmatrix}$$
$$\boldsymbol{F}(\boldsymbol{U}) = \begin{pmatrix} \rho \boldsymbol{v} \\ \rho \boldsymbol{v} \boldsymbol{v}^T + P \\ (\rho e + P) \boldsymbol{v} \end{pmatrix} P = (\gamma - 1)\rho u$$

Current state-of-the-art in cosmological hydro simulations¹² The Eagle Project (Schaye et al. 2015) The Horizon AGN project (Dubois et al. 14)

Magneticum (Dolag et al. 2014)

Illustris TNG (Springel et al. 17)

The Illustris project

HUBBLE DEEP FIELD

Vogelsberger et al., Nature, 2014 Vogelsberger et al., MNRAS, 2014 Genel et al., MNRAS, 2014 Sijacki et al., MNRAS, 2015

The Illustris project

GALAXY MORPHOLOGIES

Vogelsberger et al., Nature, 2014, Vogelsberger et al., MNRAS, 2014 Genel et al., MNRAS, 2014 Sijacki et al., MNRAS, 2015

Black holes in Illustris

BH MASS – BULGE MASS RELATION

Kormendy & Ho, 2013: best fit

circles: ellipticals; stars: spirals with bulges; squares: pseudo bulges Sijacki et al, 2015

<u>Current state-of-the-art in cosmological hydro simulations¹⁶</u>

Different sub-grid models achieve similar results!

- Predictive power?
- Fine tuning?
- Purpose of simulations? Learning about the underlying physics?

Curtis & Sijacki, MNRAS, 2015

<u>Resolving flows onto BHs</u>

VORONOI MESH

Curtis & Sijacki, MNRAS, 2015

<u>Resolving flows onto BHs</u>

GAS TEMPERATURE MAPS (edge on)

Curtis & Sijacki, MNRAS, 2015

Powerful QSO outflow in a massive disk galaxy at high z²⁰

Curtis & Sijacki, MNRAS Letter 2015

SAME BH FEEDBACK AT DIFFERENT RESOLUTIONS LEADS TO VERY DIFFERENT GALAXY MORPHOLOGY

(have we understood morphological evolution of galaxies and quenching?)

Powerful QSO outflow in a massive disk galaxy at high z²¹

Costa, Rosdahl, Sijacki, Haehnelt, 2017, in prep.

DIFFERENT BH FEEDBACK AT A SAME RESOLUTION LEADS TO VERY DIFFERENT GALAXY MORPHOLOGY

(have we understood morphological evolution of galaxies and quenching?)

SAME SUPERNOVA FEEDBACK AT DIFFERENT **RESOLUTIONS LEADS TO COMPLETELY** DIFFERENT GALAXY MORPHOLOGIES

Smith, Sijacki & Shen, 2017, in prep.

Conclusions

Lessons learned:

1. Calibrating galaxy formation physics in simulations requires careful study of numerics and unbiased comparison with large observational datasets

- 2. Sub-grid physics uncertainties still very large!
- → Free parameters of sub-grid models "fine tuned" for specific observables
- \rightarrow Other results are in principle predictions, but....

a) Different set of baryonic physics can lead to similar z = 0 results (redshift evolution is different) \rightarrow DEGENERACIES

b) Same baryonic physics at different resolutions may lead to different results \rightarrow WHAT DO WE LEARN ABOUT PHYSICS?

- 3. Next generation sub-grid models for SF and BH physics needed in large cosmological simulations
- → spatial resolution requirements daunting
- → more cross-talk with "small-scale" community