# Dark Energy

Filippo Vernizzi - IPhT, CEA Saclay

# Dark Energy and Modified Gravity

Filippo Vernizzi - IPhT, CEA Saclay

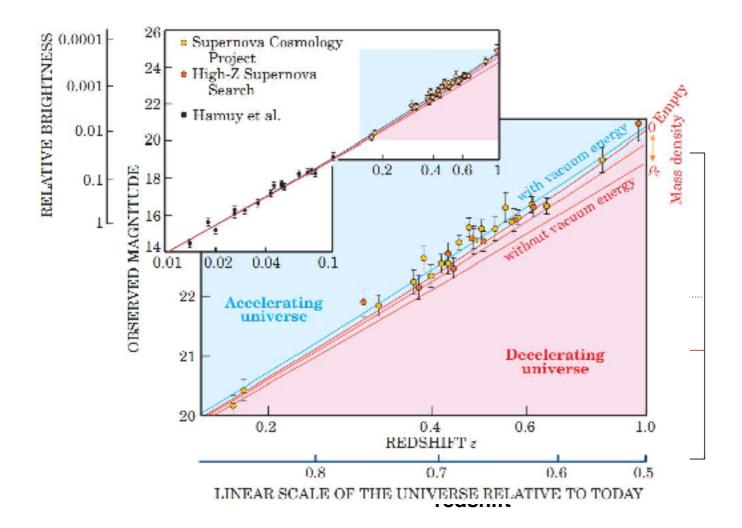
# Effective Theory of Dark Energy and Modified Gravity

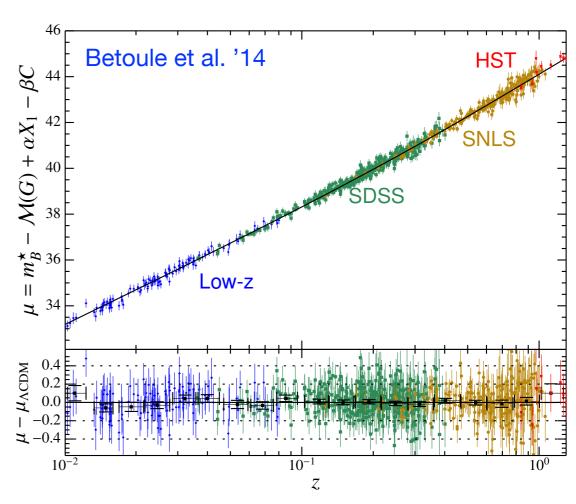
Filippo Vernizzi - IPhT, CEA Saclay

In 1998, the Universe started accelerating... Confirmed by many independent datasets

In 1998, the Universe started accelerating... Confirmed by many independent datasets

Luminosity distance/redshift relation SNIa:





**Fig. 8.** *Top:* Hubble diagram of the combined sample. The distance modulus redshift relation of the best-fit  $\Lambda$ CDM cosmology for a fixed  $H_0 = 70 \, \mathrm{km \, s^{-1} \, Mpc^{-1}}$  is shown as the black line. *Bottom:* Residuals from the best-fit  $\Lambda$ CDM cosmology as a function of redshift. The weighted average of the residuals in logarithmic redshift bins of width  $\Delta z/z \sim 0.24$  are shown as black dots.

In 1998, the Universe started accelerating... Confirmed by many independent datasets

Standard cosmology governed by General Relativity

$$G_{\mu\nu}(g) = 8\pi G T_{\mu\nu}$$

Acceleration implies some form of unknown matter with negative pressure: **dark energy** 

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) > 0$$

In 1998, the Universe started accelerating... Confirmed by many independent datasets

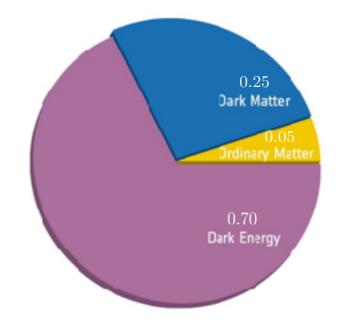
Standard cosmology governed by General Relativity

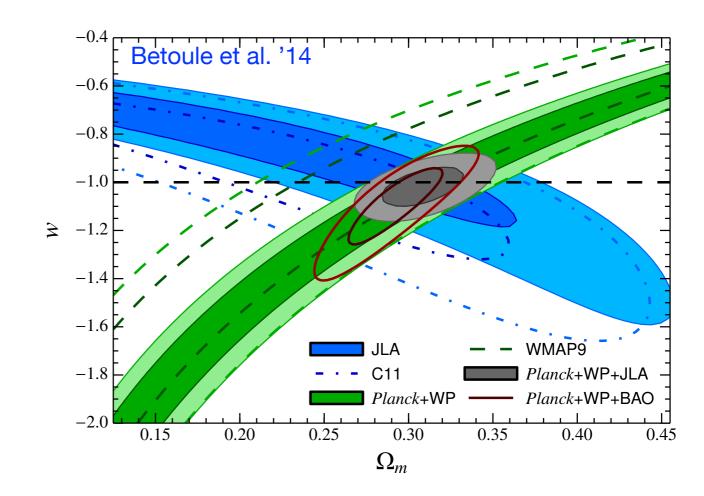
$$G_{\mu\nu}(g) = 8\pi G T_{\mu\nu}$$

Acceleration implies some form of unknown matter with negative pressure: **dark energy** 

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) > 0$$

$$w = \frac{p_{\rm de}}{\rho_{\rm de}} \approx -1$$
  $\Omega_{\rm de} \approx 0.7$ 





# Cosmological Constant

 $T_{\mu\nu}^{(\mathrm{de})}=-\Lambda g_{\mu\nu}$ : CC, simplest explanation, consistent with all data

But 
$$\Lambda = \rho_{\rm de} \simeq (10^{-3} {\rm eV})^4$$
 unnaturally small

Extremely **sensitive** to **UV physics**. Cancelation with vacuum energy of each particle at any

loop-order in perturbation theory

$$\Lambda_{\rm obs} = \Lambda_{\rm bare} + \sum_i c_i m_i^4$$

e.g. Burgess 13; Padilla 15

# Cosmological Constant

 $T_{\mu\nu}^{(\mathrm{de})}=-\Lambda g_{\mu\nu}$ : CC, simplest explanation, consistent with all data

But 
$$\Lambda = \rho_{\rm de} \simeq (10^{-3} {\rm eV})^4$$
 unnaturally small

Extremely **sensitive** to **UV physics**. Cancelation with vacuum energy of each particle at any loop-order in perturbation theory

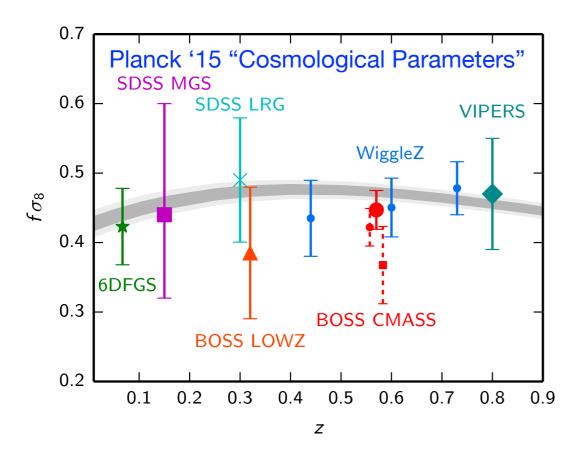
$$\Lambda_{
m obs} = \Lambda_{
m bare} + \sum_i c_i m_i^4$$

e.g. Burgess 13; Padilla 15

Several attempts to explain smallness. E.g., **Anthropic** (Weinberg 89), **Relaxation** (Abbott 85; Alberte et al 16), **Sequestering** (Kaloper & Padilla 13), **Nonlocal** (Carroll and Remmen 17), etc

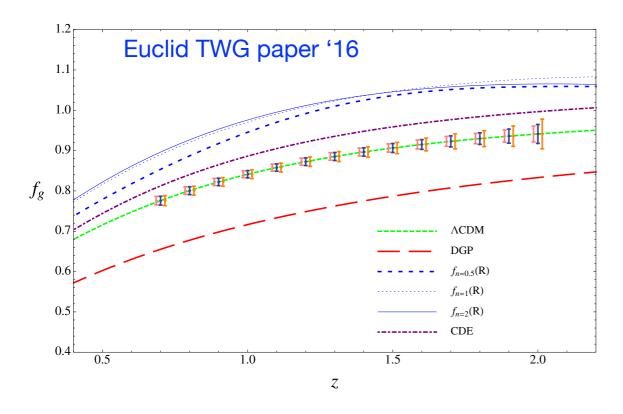
#### Not a CC

Explanation may be associated to some **dynamical mechanism**: new field or modification of gravity on large scales.



### Not a CC

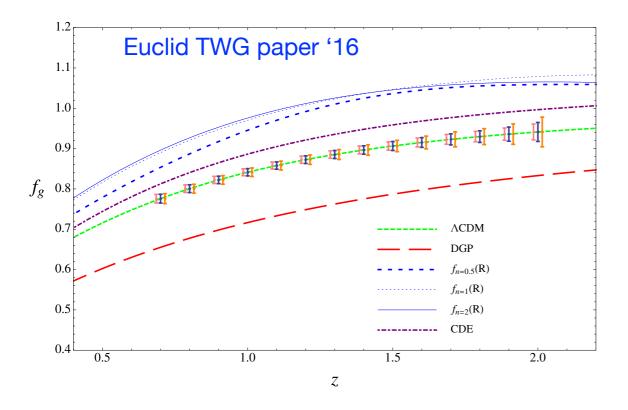
Explanation may be associated to some **dynamical mechanism**: new field or modification of gravity on large scales.



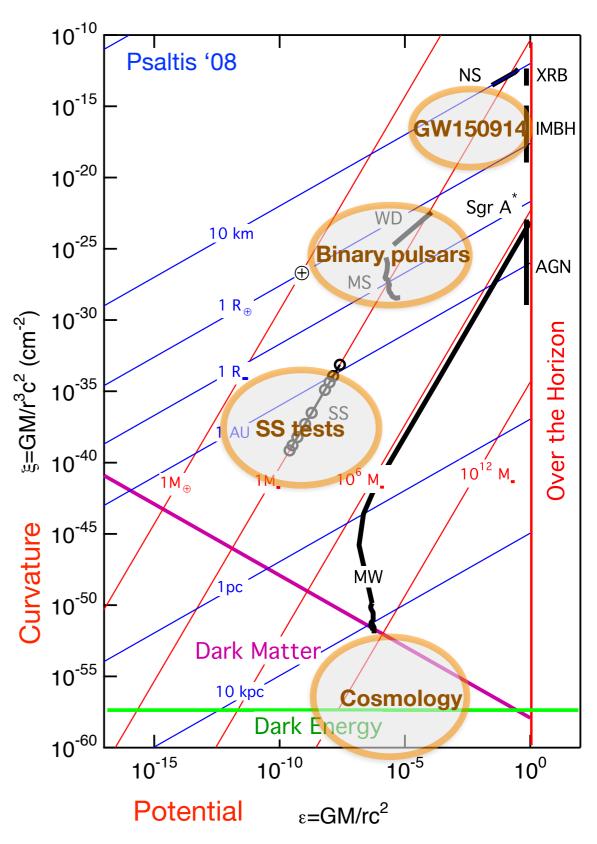
#### Not a CC

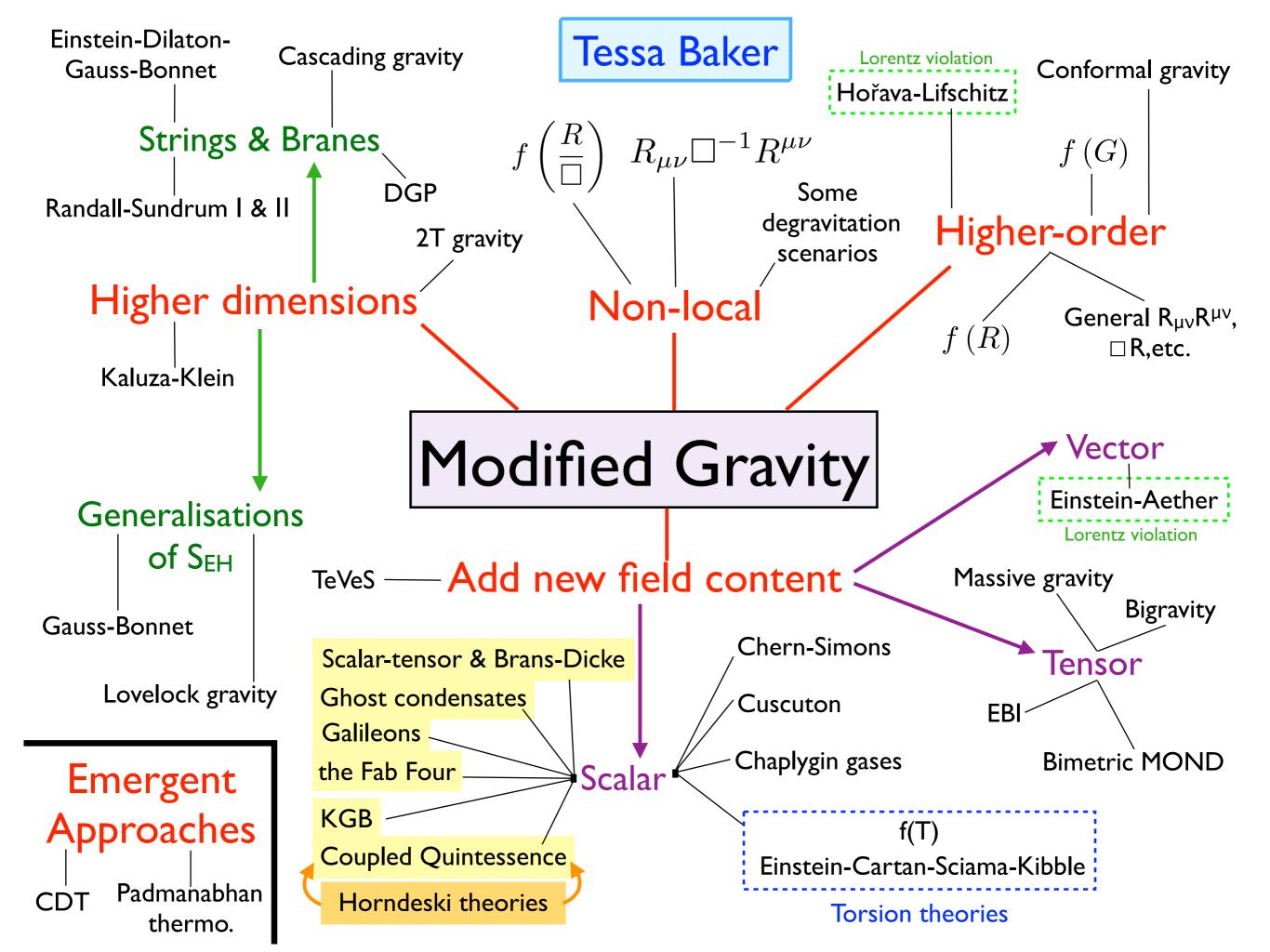
Explanation may be associated to some dynamical mechanism: new field or modification of

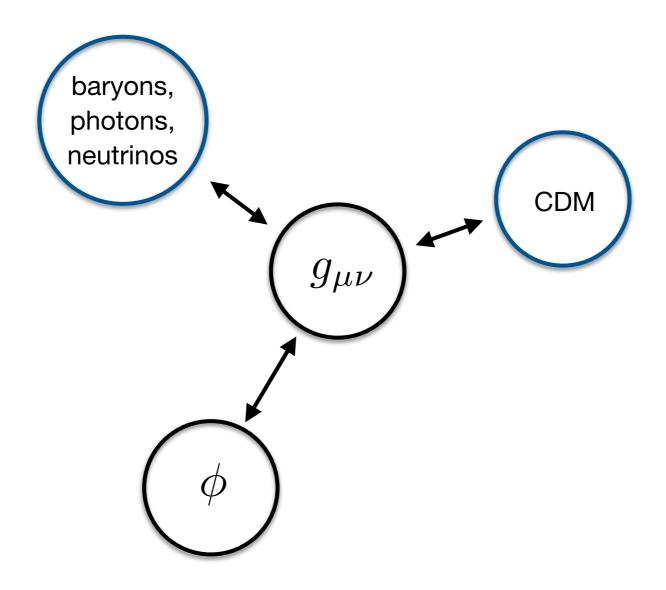
gravity on large scales.



Gravity **tested** over specials ranges of scales and masses. Cosmology is a **window** for testing it on very large distances







$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi,X) \partial_\mu \phi \partial_\nu \phi - V(\phi) \qquad \qquad X = g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$
 Kinetic term Potential

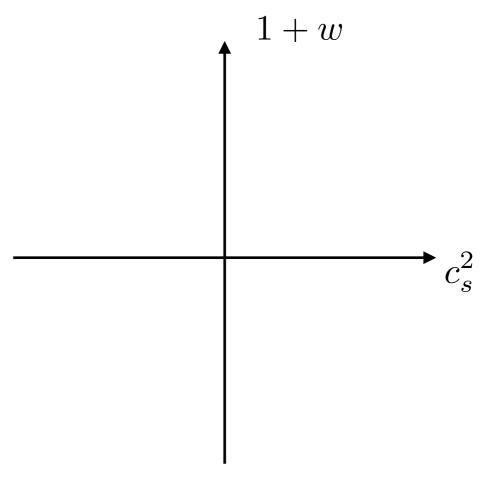
Expand kinetic term around an FRW background:  $\phi = \phi(t) + \varphi(t, \vec{x})$ 

$$\phi = \bar{\phi}(t) + \varphi(t, \vec{x})$$

$$\mathcal{L} = \frac{1}{2} Z(\bar{\phi}) \left[ \dot{\varphi}^2 - c_s^2(\bar{\phi}) (\nabla \varphi)^2 \right]$$

$$c_s^2 = \frac{\rho_{\rm de} + p_{\rm de}}{Z}$$

Time-dependent kinetic energy and sound speed



Creminelli, D'Amico, Noreña, FV 08

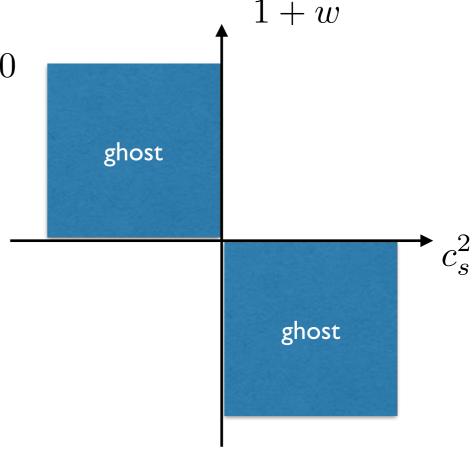
$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \qquad X = g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

Expand kinetic term around an FRW background:  $\phi = \bar{\phi}(t) + \varphi(t, \vec{x})$ 

$$\mathcal{L} = \frac{1}{2} Z(\bar{\phi}) \left[ \dot{\varphi}^2 - c_s^2(\bar{\phi})(\nabla \varphi)^2 \right] \qquad c_s^2 = \frac{\rho_{\text{de}} + p_{\text{de}}}{Z}$$

Time-dependent kinetic energy and sound speed

• Avoid negative energy states (ghosts):  $Z(\bar{\phi})>0$ 



$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \qquad X = g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

Expand kinetic term around an FRW background:  $\phi = \bar{\phi}(t) + \varphi(t, \vec{x})$ 

$$\mathcal{L} = \frac{1}{2} Z(\bar{\phi}) \left[ \dot{\varphi}^2 - c_s^2(\bar{\phi}) (\nabla \varphi)^2 \right]$$

$$c_s^2 = \frac{\rho_{\rm de} + p_{\rm de}}{Z}$$

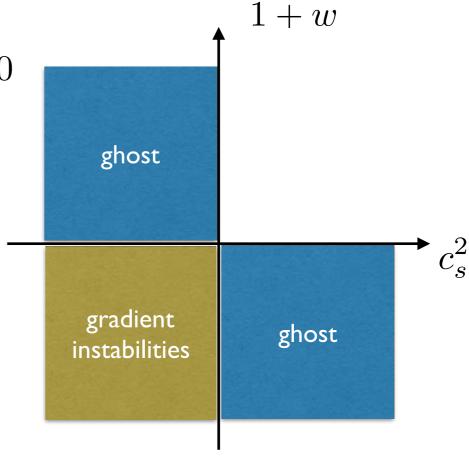
Time-dependent kinetic energy and sound speed

Avoid negative energy states (ghosts):

$$Z(\bar{\phi}) > 0$$

Avoid gradient instabilities:

$$c_s^2(\bar{\phi}) > 0$$



$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \qquad X = g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

Expand kinetic term around an FRW background:  $\phi = \phi(t) + \varphi(t, \vec{x})$ 

$$\phi = \bar{\phi}(t) + \varphi(t, \vec{x})$$

$$\mathcal{L} = \frac{1}{2} Z(\bar{\phi}) \left[ \dot{\varphi}^2 - c_s^2(\bar{\phi}) (\nabla \varphi)^2 \right]$$

$$c_s^2 = \frac{\rho_{\rm de} + p_{\rm de}}{Z}$$

Time-dependent kinetic energy and sound speed

Avoid negative energy states (ghosts):

$$Z(\bar{\phi}) > 0$$

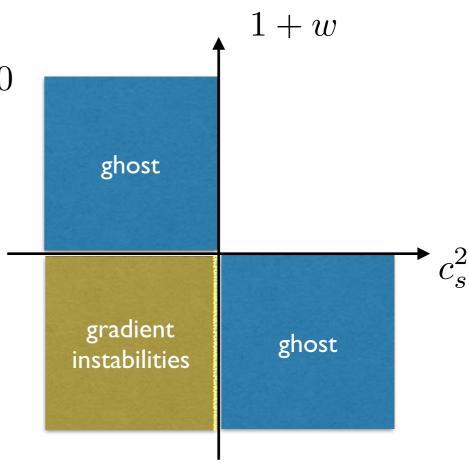
Avoid gradient instabilities:

$$c_s^2(\bar{\phi}) > 0$$

Gradient instabilities can be cured by higher-order operators for  $c_s^2 \approx 0$ 

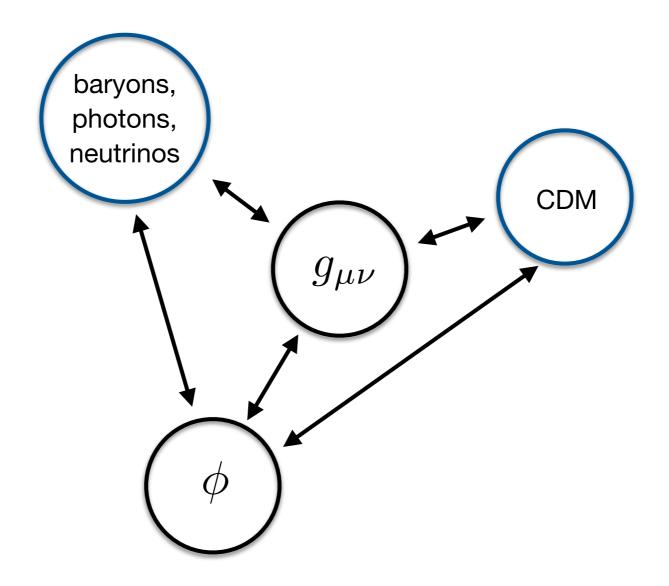
Arkani-Hamed et al. 03; Creminelli et al 06

(see also Melville's talk)



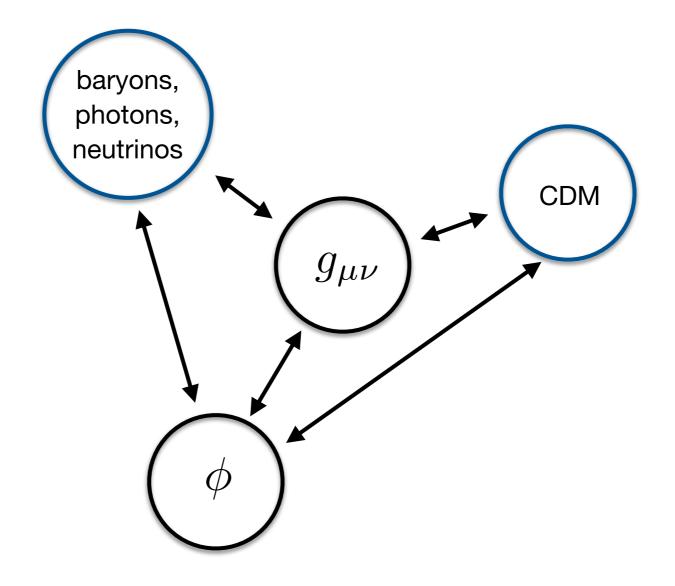
Creminelli, D'Amico, Noreña, FV 08

$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi,X) \partial_\mu \phi \partial_\nu \phi - V(\phi) + \beta(\phi) T^\mu_\mu \quad \text{Coupling to matter}$$



$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi,X) \partial_\mu \phi \partial_\nu \phi - V(\phi) + \beta(\phi) T^\mu_\mu \quad \text{Coupling to matter}$$

Acceleration can be explained by non-minimal coupling: self-acceleration



$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + \beta(\phi) T^{\mu}_{\mu}$$

Expand solution and specialise to point source and quasi-static approximation

$$Z(\bar{\phi}) \left( \ddot{\varphi} - c_s^2(\bar{\phi}) \nabla^2 \varphi \right) + m^2(\bar{\phi}) \varphi = \beta'(\bar{\phi}) M \delta^{(3)}(\vec{x})$$

$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + \beta(\phi) T^{\mu}_{\mu}$$

Expand solution and specialise to point source and quasi-static approximation

$$Z(\bar{\phi})\left(\ddot{\varphi} - c_s^2(\bar{\phi})\nabla^2\varphi\right) + m^2(\bar{\phi})\varphi = \beta'(\bar{\phi})M\delta^{(3)}(\vec{x})$$

Fifth force exchanged: 
$$U_5(r)=-rac{eta'^2(ar\phi)}{Z(ar\phi)c_s^2(ar\phi)}rac{e^{-rac{m(\phi)}{\sqrt{Z(ar\phi)}}c_s(ar\phi)}r}{4\pi r}M$$

$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + \beta(\phi) T^{\mu}_{\mu}$$

Expand solution and specialise to point source and quasi-static approximation

$$Z(\bar{\phi}) \left( \ddot{\varphi} - c_s^2(\bar{\phi}) \nabla^2 \varphi \right) + m^2(\bar{\phi}) \varphi = \beta'(\bar{\phi}) M \delta^{(3)}(\vec{x})$$

Fifth force exchanged: 
$$U_5(r)=-\frac{\beta'^2(\bar{\phi})}{Z(\bar{\phi})c_s^2(\bar{\phi})}\frac{e^{-\frac{m(\bar{\phi})}{\sqrt{Z(\bar{\phi})}c_s(\bar{\phi})}r}}{4\pi r}M$$

**Chameleon**: scalar acquires a large mass in high density region, due to coupling to matter Khoury and Weltman 03

$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + \beta(\phi) T^{\mu}_{\mu}$$

Expand solution and specialise to point source and quasi-static approximation

$$Z(\bar{\phi}) \left( \ddot{\varphi} - c_s^2(\bar{\phi}) \nabla^2 \varphi \right) + m^2(\bar{\phi}) \varphi = \beta'(\bar{\phi}) M \delta^{(3)}(\vec{x})$$

Fifth force exchanged: 
$$U_5(r)=-rac{eta'^2(ar\phi)}{Z(\phi)c_s^2(ar\phi)}rac{e^{-rac{m(\phi)}{\sqrt{Z(ar\phi)}}c_s(ar\phi)}r}{4\pi r}M$$

Chameleon: scalar acquires a large mass in high density region, due to coupling to matter

**Symmetron**: coupling vanishes in high-density region, where symmetry is restored

Hinterbichler and Khoury 10

$$\mathcal{L} = -\frac{1}{2} Z^{\mu\nu}(\phi, X, \Box \phi) \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + \beta(\phi) T^{\mu}_{\mu}$$

Expand solution and specialise to point source and quasi-static approximation

$$Z(\bar{\phi})\left(\ddot{\varphi} - c_s^2(\bar{\phi})\nabla^2\varphi\right) + m^2(\bar{\phi})\varphi = \beta'(\bar{\phi})M\delta^{(3)}(\vec{x})$$

Fifth force exchanged:  $U_5(r) = \frac{\beta'^2(\bar{\phi})}{Z(\bar{\phi})c_s^2(\bar{\phi})} \frac{e^{-\frac{m(\bar{\phi})}{\sqrt{Z(\bar{\phi})}c_s(\bar{\phi})}}r}{4\pi r} M$ 

Chameleon: scalar acquires a large mass in high density region, due to coupling to matter

Symmetron: coupling vanishes in high-density region, where symmetry is restored

Vainshtein: higher-derivative self-interactions suppress the scalar at short scales

Vainshtein 72

### Vainshtein screening

Review by Babichev and Deffayet 13

Originally introduced in Massive Gravity, rediscovered in DGP

Ex: 
$$\mathcal{L} = -(\partial \phi)^2 + \frac{(\partial \phi)^2 \Box \phi}{\Lambda^3} + \beta(\phi) T^{\mu}_{\mu}$$

### Vainshtein screening

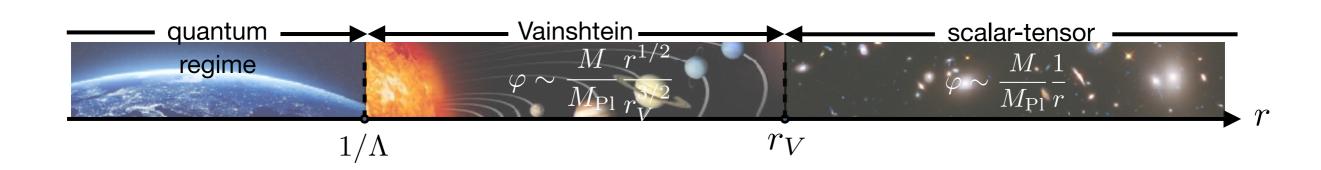
#### Review by Babichev and Deffayet 13

Originally introduced in Massive Gravity, rediscovered in DGP

Ex: 
$$\mathcal{L} = -(\partial \phi)^2 + \frac{(\partial \phi)^2 \Box \phi}{\Lambda^3} + \beta(\phi) T^{\mu}_{\mu}$$

Classical nonlinearities 
$$\frac{\Box \phi}{\Lambda^3} \sim 1 \quad \Rightarrow \quad r_V \sim \left(\frac{M}{M_{\rm Pl}\Lambda^3}\right)^{\frac{1}{3}} \qquad \qquad \varphi \sim \frac{M}{M_{\rm Pl}} \frac{1}{r}$$

Quantum corrections 
$$\frac{\partial}{\Lambda} \sim 1 \quad \Rightarrow \quad \frac{1}{r\Lambda} \sim 1 \qquad \quad \Lambda \sim (M_{\rm Pl} H_0^2)^{\frac{1}{3}} \sim \frac{1}{10^7 \, {\rm cm}}$$



#### Horndeski theories

Most general Lorentz-invariant scalar-tensor theories with 2nd-order EOM. **No extra modes**: 1 scalar + 2 tensor polarisations

$$\mathcal{L}_{\mathrm{H}}^{(2)} = G_{2}(\phi,X) \qquad X = \nabla_{\mu}\phi\nabla^{\mu}\phi \qquad \text{(see Nishi and Ramirez's talk)}$$
 
$$\mathcal{L}_{\mathrm{H}}^{(3)} = G_{3}(\phi,X)\Box\phi$$
 
$$\mathcal{L}_{\mathrm{H}}^{(4)} = G_{4}(\phi,X)R - 2G_{4,X}(\phi,X)\left[(\Box\phi)^{2} - (\nabla_{\mu}\nabla_{\nu}\phi)^{2}\right]$$
 
$$\mathcal{L}_{\mathrm{H}}^{(5)} = G_{5}(\phi,X)G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi + \frac{1}{3}G_{5,X}(\phi,X)\left[(\Box\phi)^{3} - 3\Box\phi(\nabla_{\mu}\nabla_{\nu}\phi)^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

#### Horndeski theories

Most general Lorentz-invariant scalar-tensor theories with 2nd-order EOM. **No extra modes**: 1 scalar + 2 tensor polarisations

$$\mathcal{L}_{\mathrm{H}}^{(2)} = G_2(\phi, X)$$

$$X = \nabla_{\mu} \phi \nabla^{\mu} \phi$$

Horndeski 73, Deffayet et al. 11 (see Nishi and Ramirez's talk)

$$\mathcal{L}_{\mathrm{H}}^{(3)} = G_3(\phi, X) \square \phi$$

$$\mathcal{L}_{H}^{(4)} = G_4(\phi, X)R - 2G_{4,X}(\phi, X) \left[ (\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$

$$\mathcal{L}_{H}^{(5)} = G_{5}(\phi, X)G^{\mu\nu}\nabla_{\mu}\nabla_{\nu}\phi + \frac{1}{3}G_{5,X}(\phi, X)\left[(\Box\phi)^{3} - 3\Box\phi(\nabla_{\mu}\nabla_{\nu}\phi)^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

Horndeski

Extra DOF

second-order equations of motion

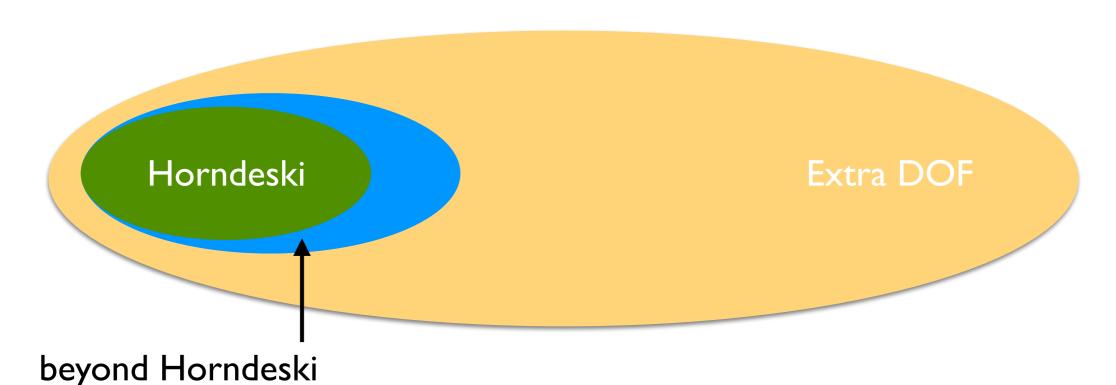
### Beyond Horndeski

Add a new combination

$$\mathcal{L}_{\mathrm{BH}} = \sum_{i} \mathcal{L}_{\mathrm{H}}^{(i)}(\phi, X) + \mathcal{L}_{\mathrm{GLPV}}(\phi, X)$$

$$\mathcal{L}_{\text{GLPV}} = F_4(\phi, X) \epsilon^{\mu\nu\rho}_{\phantom{\mu\nu\rho}\sigma} \epsilon^{\mu'\nu'\rho'\sigma} \nabla_{\mu}\phi \nabla_{\mu'}\phi (\nabla_{\nu}\nabla_{\nu'}\phi) (\nabla_{\rho}\nabla_{\rho'}\phi)$$

$$+ F_5(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \nabla_{\mu}\phi \nabla_{\mu'}\phi (\nabla_{\nu}\nabla_{\nu'}\phi) (\nabla_{\rho}\nabla_{\rho'}\phi) (\nabla_{\sigma}\nabla_{\sigma'}\phi)$$
with  $XG_{5,X}F_4 = 3F_5 (G_4 - 2XG_{4,X})$ 



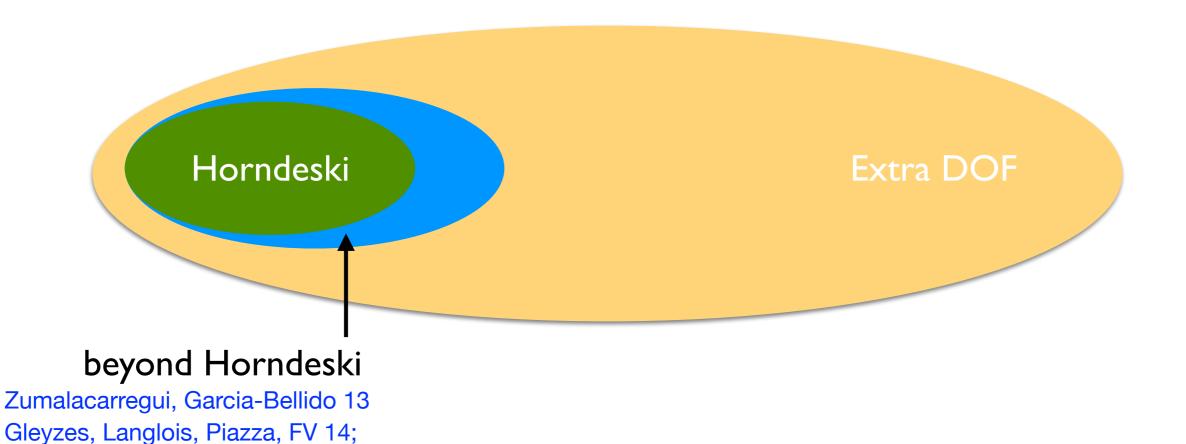
Zumalacarregui, Garcia-Bellido 13 Gleyzes, Langlois, Piazza, FV 14;

# Degeneracy

Higher derivatives ⇒ extra ghost DOF, only for **non degenerate** theories

#### Ex 1: 1 variable mechanical system

$$\mathcal{L} = \frac{1}{2} \ddot{\phi}^2 + \frac{m}{2} \dot{\phi}^2$$
 
$$\Rightarrow \qquad \ddot{Q} = mQ + \lambda$$
 
$$\dot{\lambda} = 0$$
 
$$2 \text{ DOF!}$$
 
$$\dot{\phi} = Q$$



# Degeneracy

Higher derivatives ⇒ extra ghost DOF, only for **non degenerate** theories

#### Ex 2: 2 variables mechanical system

$$\mathcal{L} = \frac{1}{2}\ddot{\phi}^2 + \frac{m}{2}\dot{\phi}^2 + \frac{k}{2}\dot{\chi}^2 + b\ddot{\phi}\dot{\chi}$$

$$\Rightarrow \qquad \begin{pmatrix} \ddot{Q} \\ \ddot{\chi} \end{pmatrix} \begin{pmatrix} 1 & b \\ b & k \end{pmatrix} = \begin{pmatrix} mQ + \lambda \\ 0 \end{pmatrix}$$

$$\dot{\lambda} = 0 \qquad \qquad k \neq b^2 \quad \text{3 DOF}$$

$$\dot{\phi} = Q \qquad \qquad k = b^2 \quad \text{2 DOF!}$$

#### **Degenerate!**

see Motohashi et al 16 Klein & Roest 16 for multifields

Extra DOF

Horndeski

#### beyond Horndeski

Zumalacarregui, Garcia-Bellido 13 Gleyzes, Langlois, Piazza, FV 14;

$$\phi(t) \leftrightarrow \phi(x^{\rho})$$

$$\chi(t) \leftrightarrow g_{\mu\nu}(x^{\rho})$$

### Degeneracy

Higher derivatives ⇒ extra ghost DOF, only for **non degenerate** theories

#### Ex 2: 2 variables mechanical system

$$\mathcal{L} = \frac{1}{2}\ddot{\phi}^2 + \frac{m}{2}\dot{\phi}^2 + \frac{k}{2}\dot{\chi}^2 + b\ddot{\phi}\dot{\chi}$$

$$Q = \dot{\phi}$$

$$\dot{\lambda} = 0$$

$$\dot{\phi} = Q$$

$$\dot{\phi} = Q$$

$$\dot{Q} = \dot{\phi}$$

$$\dot{\phi} = Q$$

$$\dot{Q} = \dot{\phi}$$

$$\dot{Q}$$

#### **Degenerate!**

see Motohashi et al 16 Klein & Roest 16 for multifields

Extra DOF

# Horndeski

beyond Horndeski

Zumalacarregui, Garcia-Bellido 13 Gleyzes, Langlois, Piazza, FV 14; More degenerate theories:

DHOST/EST Langlois, Noui 15, 16;

Crisostomi, Koyama, Tasinato 16;

#### DHOST/EST theories

Degenerate Higher-Order Scalar-Tensor theories or Extended Scalar Tensor theories

$$\mathcal{L}_{\mathrm{DHOST}}^{(2)} = f_2(\phi, X) R + \sum_{i}^{5} C_i^{(2)}{}^{\mu\nu\rho\sigma}(\phi, X) \nabla_{\mu}\nabla_{\nu}\phi \nabla_{\rho}\nabla_{\sigma}\phi \qquad \qquad \begin{array}{c} \text{Langlois, Noui 15;} \\ \text{Crisostomi at al. 16;} \\ \text{de Rham, Matas 16} \\ \text{(see Crisostomi's talk; see also Saito's talk)} \end{array}$$

#### DHOST/EST theories

Degenerate Higher-Order Scalar-Tensor theories or Extended Scalar Tensor theories

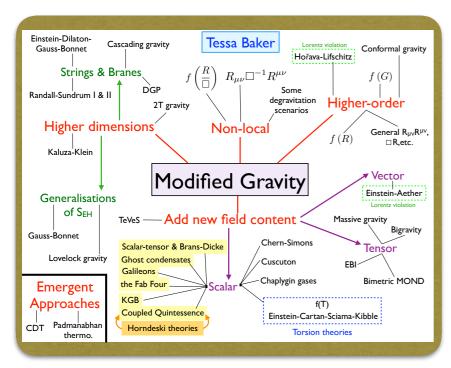
$$\mathcal{L}_{\mathrm{DHOST}}^{(2)} = f_2(\phi,X)R + \sum_{i}^{5} C_i^{(2)\mu\nu\rho\sigma}(\phi,X)\nabla_{\mu}\nabla_{\nu}\phi\,\nabla_{\rho}\nabla_{\sigma}\phi \qquad \qquad \begin{array}{c} \text{Langlois, Noui 15;} \\ \text{Crisostomi at al. 16;} \\ \text{de Rham, Matas 16} \\ \text{(see Crisostomi's talk; see also Saito's talk)} \end{array}$$

- In general, 3 degeneracy conditions (7 classes) associated to second-class constraints
- Structure preserved by general disformal transformations of the metric:

$$g_{\mu\nu} \to C(\phi,X) g_{\mu\nu} + D(\phi,X) \partial_{\mu}\phi \partial_{\nu}\phi$$
 (see also Takahashi's talk)

 Quadratic + cubic theories: 9 subclasses, 25 combinations of quadratic and cubic theories

#### Models

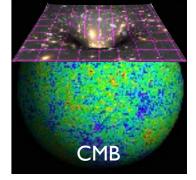


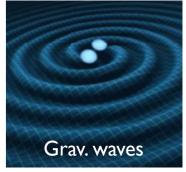
Many models of modified gravity, each with its own theoretical motivation and phenomenology

#### **Observations**



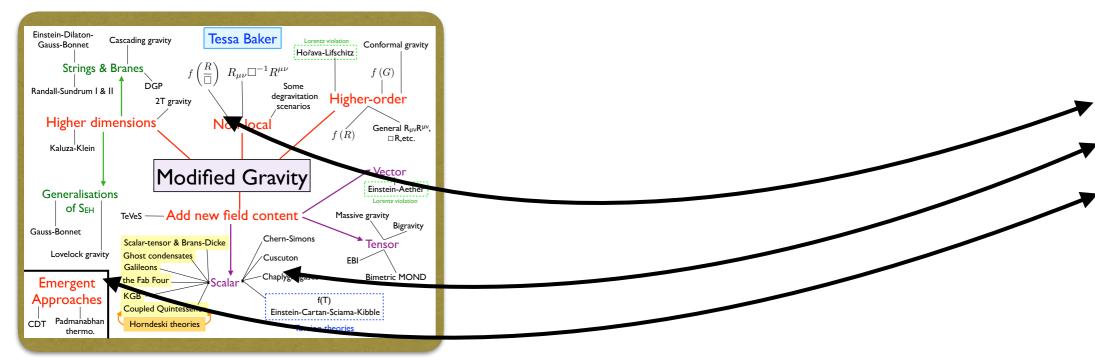






### Observations

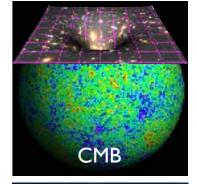


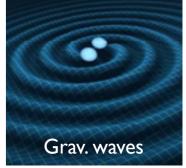


Many models of modified gravity, each with its own theoretical motivation and phenomenology



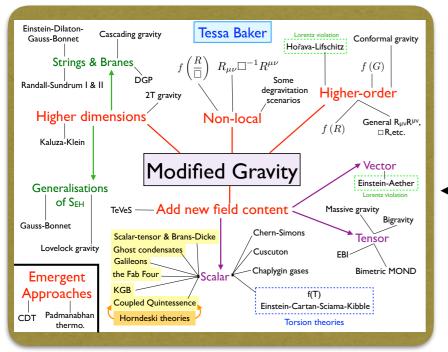






#### **Observations**

### Models

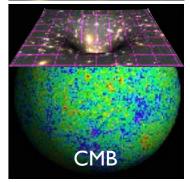


ETofDE  $\alpha_K(t), \, \alpha_B(t), \, \alpha_M(t),$   $\alpha_T(t), \, \alpha_T(t), \, \dots$ 

Bridge models and observations in a minimal and systematic way

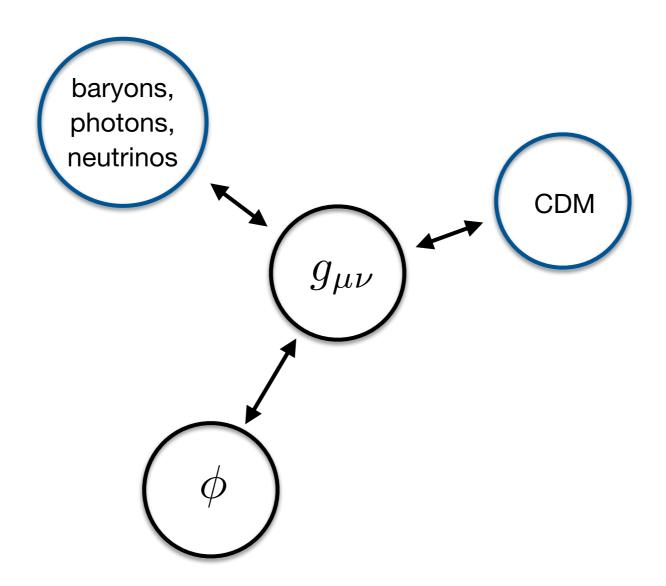




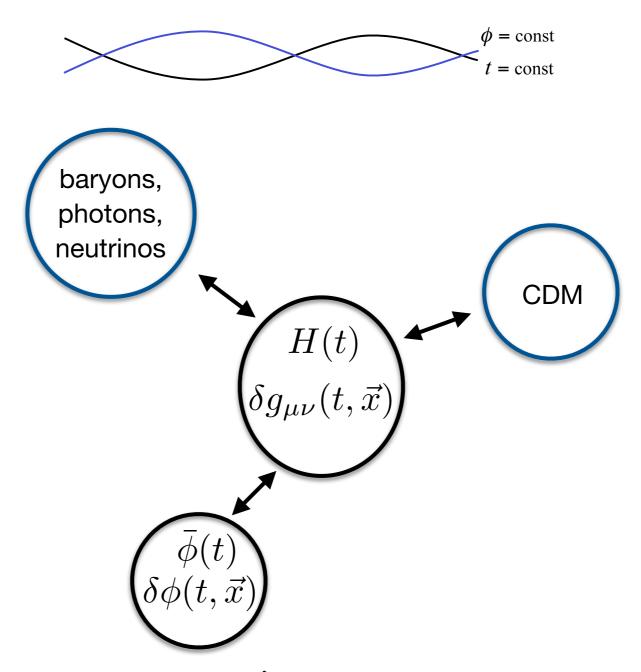




### **Jordan frame**

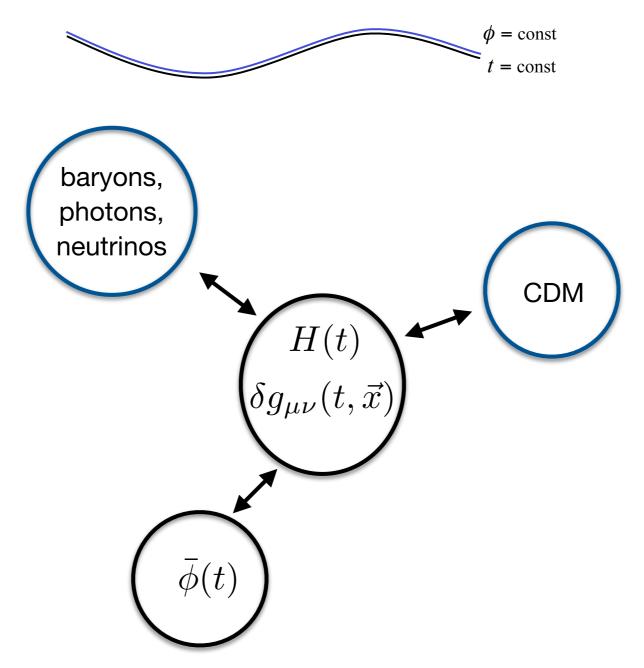


### **FLRW** background



Time reparametrisation invariance broken,  $\dot{\phi}(t) \neq 0$ 

### Uniform field slicing $\delta\phi(t,\vec{x})=0$



Spatial reparametrisation invariance preserved on these hypersurfaces

Action: most general function of the metric perts, preserving spatial-diff invariance

Gubitosi, Piazza, FV 12

Gleyzes, Langlois, Piazza, FV 13

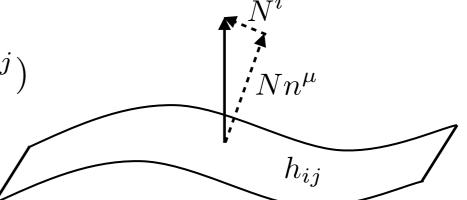
Bloomfield et al. 12, 13

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

#### ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

$$N \sim \dot{\phi} , K_{ij} \sim \dot{h}_{ij} , ^{(3)}R \sim \partial^2 h$$



Gubitosi, Piazza, FV 12 Gleyzes, Langlois, Piazza, FV 13

Bloomfield et al. 12, 13

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

ADM decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(N^{i}dt + dx^{i})(N^{j}dt + dx^{j})$$

$$N \sim \dot{\phi}, K_{ij} \sim \dot{h}_{ij}, ^{(3)}R \sim \partial^{2}h$$

- New operators describe deviations from GR (\(\Lambda\text{CDM}\)). Ordered in number of perturbations
  and derivatives
- Time-dependent couplings (functions  $a_i(t)$ ), due to expansion around FLRW background
- Functions  $a_i(t)$  independent of background evolution  $H(t)=\dot{a}/a$

We fit to data H(t) and  $lpha_i(t)$  (agnostic of their time dependence and parametrization)

Gubitosi, Piazza, FV 12

Gleyzes, Langlois, Piazza, FV 13

Bloomfield et al. 12, 13

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

Notation of Bellini, Sawicki '14 for the alphas

| $lpha_{m{i}}$              | $\alpha_K$   | $\alpha_B$          | $\alpha_{M}$          | $lpha_T$    | $\alpha_H$        |
|----------------------------|--------------|---------------------|-----------------------|-------------|-------------------|
| $\mathcal{O}_i^{(2)}$      | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ |
| quintessence,<br>k-essence | ✓            |                     |                       |             |                   |
| Cubic<br>Galileon          | ✓            | ✓                   |                       |             |                   |
| Brans-Dicke,<br>f(R)       | ✓            | ✓                   | ✓                     |             |                   |
| Horndeski                  | ✓            | ✓                   | ✓                     | ✓           |                   |
| Beyond<br>Horndeski        | ✓            | ✓                   | ✓                     | ✓           | ✓                 |

**5 functions of time** instead of 5 functions of  $\phi$ ,  $(\partial \phi)^2$ ; minimal number of parameters

$$N \sim \dot{\phi} , K_{ij} \sim \dot{h}_{ij} , ^{(3)}R \sim \partial^2 h$$

Gubitosi, Piazza, FV 12

Gleyzes, Langlois, Piazza, FV 13

Bloomfield et al. 12, 13

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

Notation of Bellini, Sawicki '14 for the alphas

| $lpha_i$                   | $lpha_K$     | $\alpha_B$          | $lpha_M$              | $lpha_T$    | $\alpha$          |                       | tions of time in<br>ns of $\phi, (\partial \phi)^2$ |          |
|----------------------------|--------------|---------------------|-----------------------|-------------|-------------------|-----------------------|-----------------------------------------------------|----------|
| $\mathcal{O}_i^{(2)}$      | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ | _                     |                                                     |          |
| quintessence,<br>k-essence | ✓            |                     |                       |             |                   | <b>Stabili</b> implem | ty conditions                                       | easy     |
| Cubic<br>Galileon          | ✓            | ✓                   |                       |             |                   | implen                |                                                     |          |
| Brans-Dicke,               | 1            | 1                   |                       |             |                   |                       | Scalar                                              | T        |
| f(R)                       | V            | <b>V</b>            | <b>V</b>              |             | N                 | o ghosts              | $\alpha_K + 6\alpha_B^2 > 0$                        | M        |
| Horndeski                  | ✓            | ✓                   | ✓                     | ✓           | No g              | radient inst.         | $c_s^2(\alpha_i) \ge 0$                             | $lpha_T$ |
| Beyond<br>Horndeski        | ✓            | ✓                   | ✓                     | ✓           | <b>√</b>          |                       |                                                     |          |

ad of 5 inimal

/ to

|                   | Scalar                       | Tensor            |  |  |
|-------------------|------------------------------|-------------------|--|--|
| No ghosts         | $\alpha_K + 6\alpha_B^2 > 0$ | $M^2 > 0$         |  |  |
| No gradient inst. | $c_s^2(\alpha_i) \ge 0$      | $\alpha_T \ge -1$ |  |  |

Gubitosi, Piazza, FV 12

Gleyzes, Langlois, Piazza, FV 13

Bloomfield et al. 12, 13

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

Notation of Bellini, Sawicki '14 for the alphas

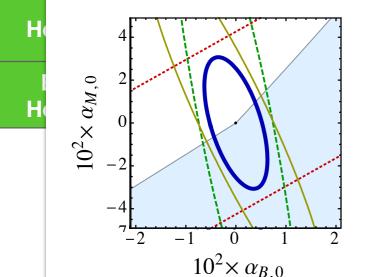
| $lpha_i$                   | $\alpha_K$   | $\alpha_B$          | $lpha_M$              | $lpha_T$    | $\alpha_H$        |
|----------------------------|--------------|---------------------|-----------------------|-------------|-------------------|
| $\mathcal{O}_i^{(2)}$      | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ |
| quintessence,<br>k-essence | ✓            |                     |                       |             |                   |
| Cubic<br>Galileon          | ✓            | ✓                   |                       |             |                   |
| Brans-Dicke.               | -            |                     |                       |             |                   |

Gleyzes, Langlois, Mancarella FV '15

**5 functions of time** instead of 5 functions of  $\phi$ ,  $(\partial \phi)^2$ ; minimal number of parameters

**Stability conditions** easy to implement

|                   | Scalar                       | Tensor            |  |  |
|-------------------|------------------------------|-------------------|--|--|
| No ghosts         | $\alpha_K + 6\alpha_B^2 > 0$ | $M^2 > 0$         |  |  |
| No gradient inst. | $c_s^2(\alpha_i) \ge 0$      | $\alpha_T \ge -1$ |  |  |



Galaxy ClusteringWeak LensingISW-GalaxyGC+ISW-Gal+WL

**Euclid-like specifications** 

Gubitosi, Piazza, FV 12

Gleyzes, Langlois, Piazza, FV 13

Bloomfield et al. 12, 13

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

Notation of Bellini, Sawicki '14 for the alphas

| $lpha_{m{i}}$              | $\alpha_K$   | $\alpha_B$          | $lpha_M$              | $lpha_T$    | $\alpha_H$        |                       | tions of ti                 |
|----------------------------|--------------|---------------------|-----------------------|-------------|-------------------|-----------------------|-----------------------------|
| $\mathcal{O}_i^{(2)}$      | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ |                       | ons of $\phi,($ or of paran |
| quintessence,<br>k-essence | ✓            |                     |                       |             |                   | <b>Stabili</b> implem | ty conditi                  |
| Cubic<br>Galileon          | ✓            | ✓                   |                       |             |                   | ППРІСП                |                             |
| Brans-Dicke,               | J            | 1                   | ./                    |             |                   |                       | Scala                       |
| f(R)                       | <b>V</b>     | <b>V</b>            | Y                     |             | N                 | o ghosts              | $\alpha_K + 6\alpha_L^2$    |
| Horndeski                  | ✓            | ✓                   | ✓                     | ✓           | No g              | radient inst.         | $c_s^2(\alpha_i)$           |
| Beyond<br>Horndeski        | ✓            | <b>√</b>            | <b>√</b>              | <b>√</b>    | ✓                 | 0 1                   | P 1 4                       |

t**ime** instead of 5  $(\partial\phi)^2$  ; minimal meters

t**ions** easy to

|                   | Scalar                       | Tensor            |
|-------------------|------------------------------|-------------------|
| No ghosts         | $\alpha_K + 6\alpha_B^2 > 0$ | $M^2 > 0$         |
| No gradient inst. | $c_s^2(\alpha_i) \ge 0$      | $\alpha_T \ge -1$ |

Can be applied to non-singular cosmologies

(see Akama and Kobayashi's talk)

# Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

All quadratic operators up to two derivatives

Langlois, Mancarella, Noui, FV 17

| $lpha_i$                   | $\alpha_K$   | $\alpha_B$          | $lpha_M$              | $lpha_T$    | $\alpha_H$        | $lpha_L$     | $eta_1$            | $eta_2$                   | $eta_3$                   |
|----------------------------|--------------|---------------------|-----------------------|-------------|-------------------|--------------|--------------------|---------------------------|---------------------------|
| $\mathcal{O}_i^{(2)}$      | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ | $\delta K^2$ | $\delta \dot{N}^2$ | $\delta \dot{N} \delta K$ | $(\partial_i \delta N)^2$ |
| quintessence,<br>k-essence | ✓            |                     |                       |             |                   |              |                    |                           |                           |
| Cubic<br>Galileon          | ✓            | ✓                   |                       |             |                   |              |                    |                           |                           |
| Brans-Dicke,<br>f(R)       | ✓            | ✓                   | ✓                     |             |                   |              |                    |                           |                           |
| Horndeski                  | ✓            | ✓                   | ✓                     | ✓           |                   |              |                    |                           |                           |
| Beyond<br>Horndeski        | ✓            | <b>√</b>            | ✓                     | ✓           | ✓                 |              |                    |                           |                           |
| DHOST/EST theries          | ✓            | <b>√</b>            | ✓                     | ✓           | ✓                 | ✓            | ✓                  | ✓                         | ✓                         |

# Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

All quadratic operators **up to two** derivatives

Langlois, Mancarella, Noui, FV 17

| $lpha_i$              | $lpha_K$     | $\alpha_B$          | $lpha_M$              | $lpha_T$    | $\alpha_H$        | $lpha_L$     | $eta_1$            | $eta_2$                   | $eta_3$                   |
|-----------------------|--------------|---------------------|-----------------------|-------------|-------------------|--------------|--------------------|---------------------------|---------------------------|
| $\mathcal{O}_i^{(2)}$ | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ | $\delta K^2$ | $\delta \dot{N}^2$ | $\delta \dot{N} \delta K$ | $(\partial_i \delta N)^2$ |

• Generic scalar dispersion relation: 
$$\mathcal{E}_1\omega^4 + \mathcal{E}_2\omega^2k^2 + \mathcal{E}_3\omega^2 + \mathcal{E}_4k^4 + \mathcal{E}_5k^2 = 0$$

• Two types of degeneracy conditions lead to  $\omega^2 - c_s^2 k^2 = 0$ 

$$\omega^2 - c_s^2 k^2 = 0$$

$$C_{\rm I}: \quad \alpha_L = 0 \;, \qquad \beta_2 = f_2(\beta_1) \;, \qquad \beta_3 = f_3(\beta_1)$$

$$\beta_2 = f_2(\beta_1) \; ,$$

$$\beta_3 = f_3(\beta_1)$$

$$\mathcal{C}_{\text{II}}: \quad \beta_1 = f_1(\alpha_T, \alpha_H, \alpha_L) \;, \quad \beta_2 = f_2(\alpha_T, \alpha_H, \alpha_L) \;, \quad \beta_3 = f_3(\alpha_T, \alpha_H, \alpha_L)$$
 
$$c_s^2 \propto -c_T^2 \qquad \text{ruled out!}$$

# Higher-Order theories

$$S^{(2)} = \int d^4x \sqrt{h} \frac{M^2}{2} \left[ \delta K_i^j \delta K_j^i - \delta K^2 + {}^{(3)}R + \delta N^{(3)}R + \sum_i \alpha_i(t) \mathcal{O}_i^{(2)}(\delta N, \delta K, \ldots) \right]$$

All quadratic operators **up to two** derivatives

Langlois, Mancarella, Noui, FV 17

| $lpha_i$              | $lpha_K$     | $\alpha_B$          | $lpha_M$              | $lpha_T$    | $\alpha_H$        | $lpha_L$     | $eta_1$            | $eta_2$                   | $eta_3$                   |
|-----------------------|--------------|---------------------|-----------------------|-------------|-------------------|--------------|--------------------|---------------------------|---------------------------|
| $\mathcal{O}_i^{(2)}$ | $\delta N^2$ | $\delta N \delta K$ | $\frac{dM^2}{d\ln a}$ | $^{(3)}\!R$ | $\delta N^{(3)}R$ | $\delta K^2$ | $\delta \dot{N}^2$ | $\delta \dot{N} \delta K$ | $(\partial_i \delta N)^2$ |

Generic scalar dispersion relation:

$$\mathcal{E}_1\omega^4 + \mathcal{E}_2\omega^2k^2 + \mathcal{E}_3\omega^2 + \mathcal{E}_4k^4 + \mathcal{E}_5k^2 = 0$$

• Two types of degeneracy conditions lead to  $\omega^2 - c_s^2 k^2 = 0$ 

$$\omega^2 - c_s^2 k^2 = 0$$

$$C_{\rm I}: \quad \alpha_L = 0 \;, \qquad \beta_2 = f_2(\beta_1) \;, \qquad \beta_3 = f_3(\beta_1)$$

$$\beta_2 = f_2(\beta_1) ,$$

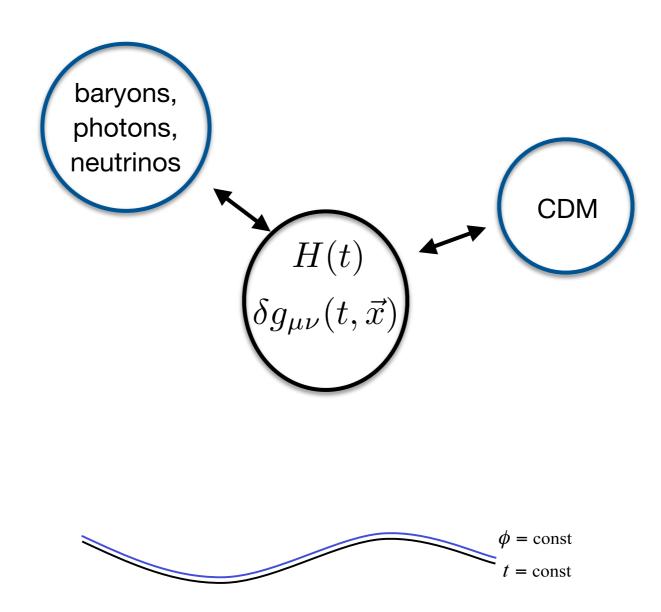
$$\beta_3 = f_3(\beta_1)$$

• Class  $C_I$  can be brought to **Horndeski frame**:  $\alpha_H = 0, \ \beta_{IJ} = 0$ 

DHOST I 
$$\longrightarrow$$
 Beyond Horndeski  $\longrightarrow$  Horndeski  $D(X)$ 

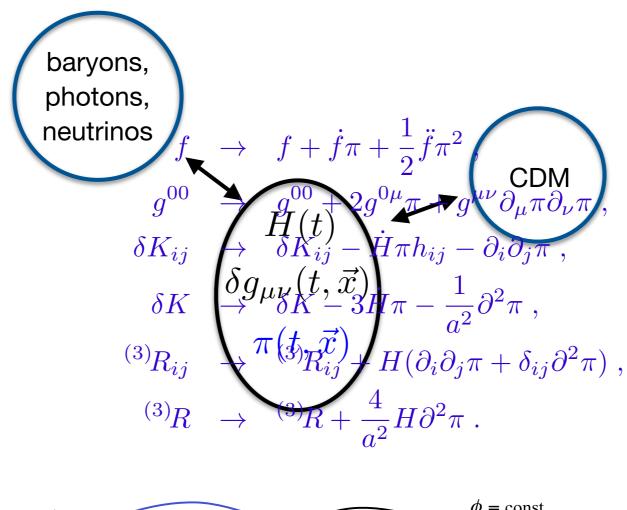
Changing frame changes matter couplings (Horndeski vs Jordan): Matter matters!

### Uniform field slicing $\,\delta\phi(t,\vec{x})=0\,$



### Uniform field slicing $\delta\phi(t,\vec{x})=0$

Newtonian gauge 
$$\,ds^2=-(1+2\Phi)dt^2+a^2(t)(1-2\Psi)d\vec{x}^2$$
 
$$t\to t+\pi(t,\vec{x})$$

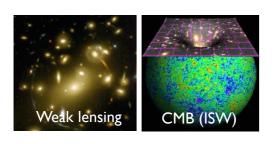




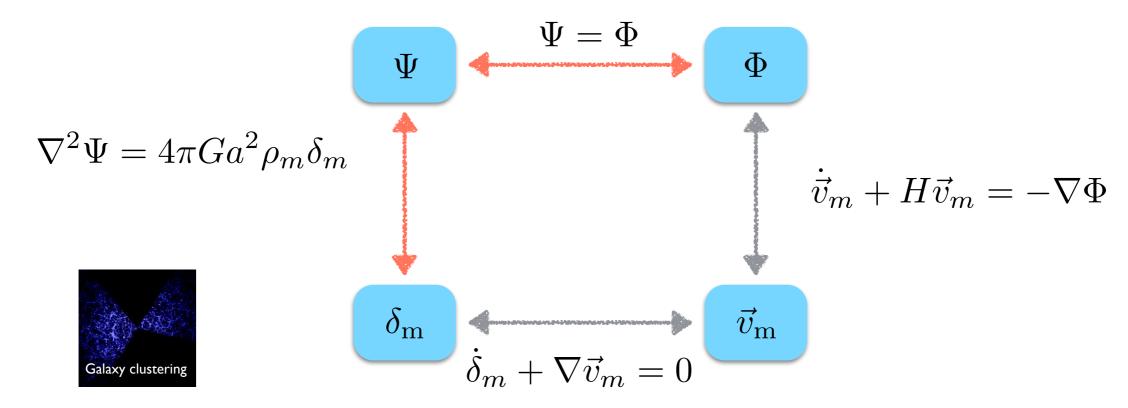
## Phenomenology

$$dt^{2} = -(1+2\Phi)dt^{2} + a^{2}(t)(1-2\Psi)d\vec{x}^{2}$$

#### Quasi-static approximations



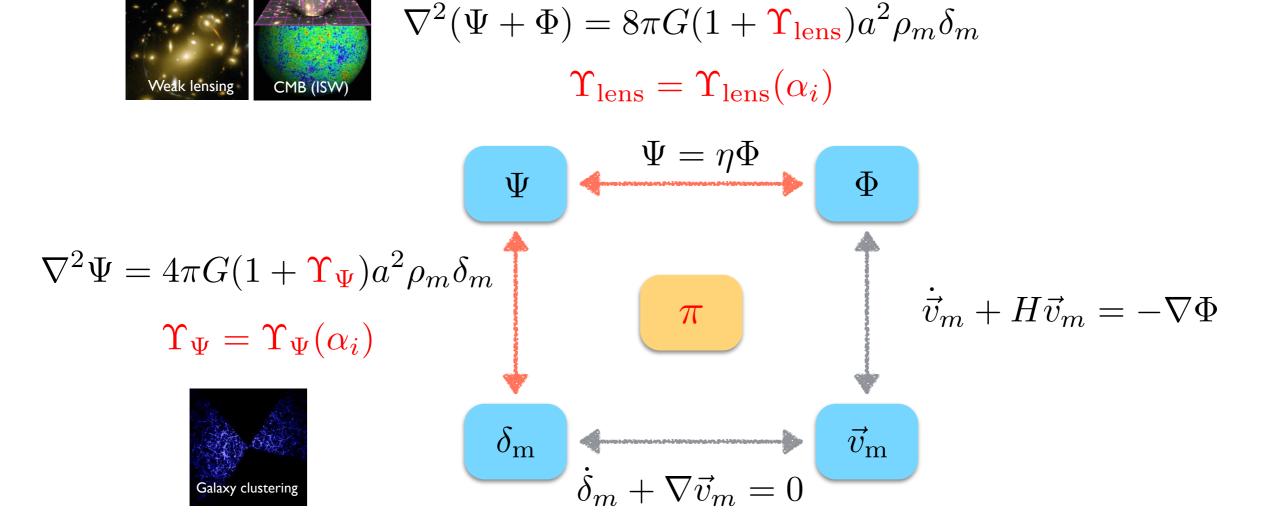
$$\nabla^2(\Psi + \Phi) = 8\pi G a^2 \rho_m \delta_m$$



## Phenomenology

$$dt^{2} = -(1+2\Phi)dt^{2} + a^{2}(t)(1-2\Psi)d\vec{x}^{2}$$

#### Quasi-static approximations



### Einstein-Boltzmann solvers

• Full Einstein-Boltzmann solver:

$$\frac{df_I}{d\eta} = C_I[f_I], \quad I = \gamma, \nu, b, \text{CDM}$$

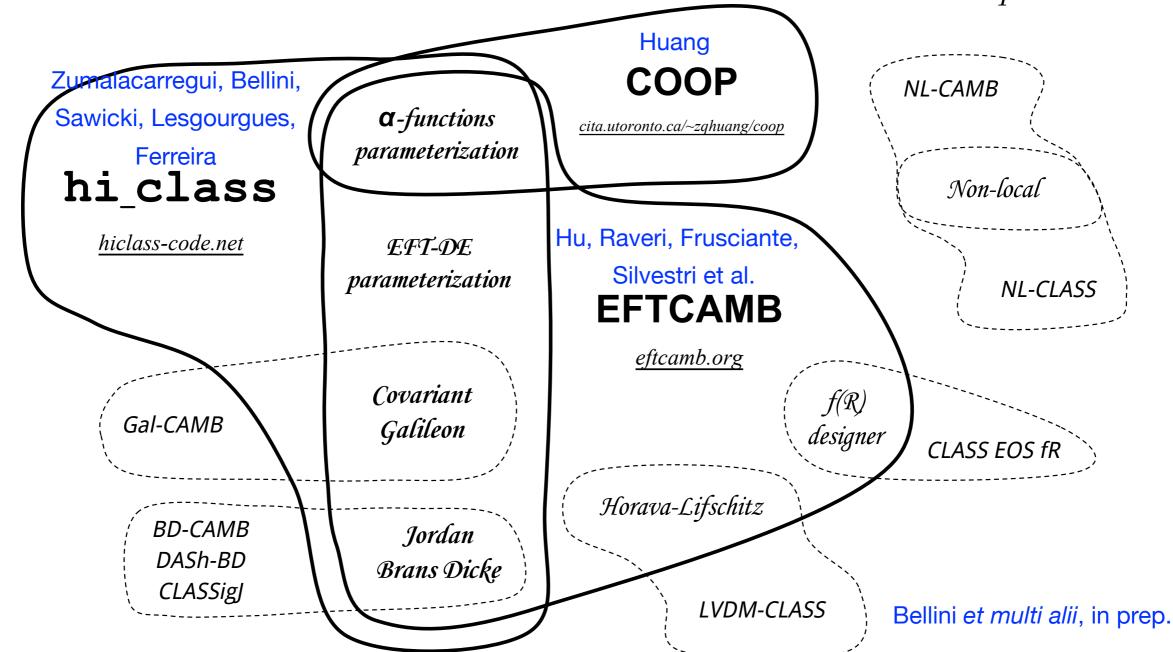
er: 
$$\frac{df_I}{d\eta} = C_I[f_I]$$
,  $I = \gamma, \nu, b, \text{CDM}$  
$$\frac{\delta S^{(2)}}{\delta \pi} = 0 \qquad \& \qquad G_{ij}^{\text{modified}} = 8\pi G \sum_I T_{ij}^{(I)}$$

### Einstein-Boltzmann solvers

• Full Einstein-Boltzmann solver:

$$\frac{df_I}{d\eta} = C_I[f_I] , \quad I = \gamma, \nu, b, \text{CDM}$$

$$\frac{\delta S^{(2)}}{\delta \pi} = 0 \qquad \& \qquad G_{ij}^{\text{modified}} = 8\pi G \sum_{I} T_{ij}^{(I)}$$



### Einstein-Boltzmann solvers

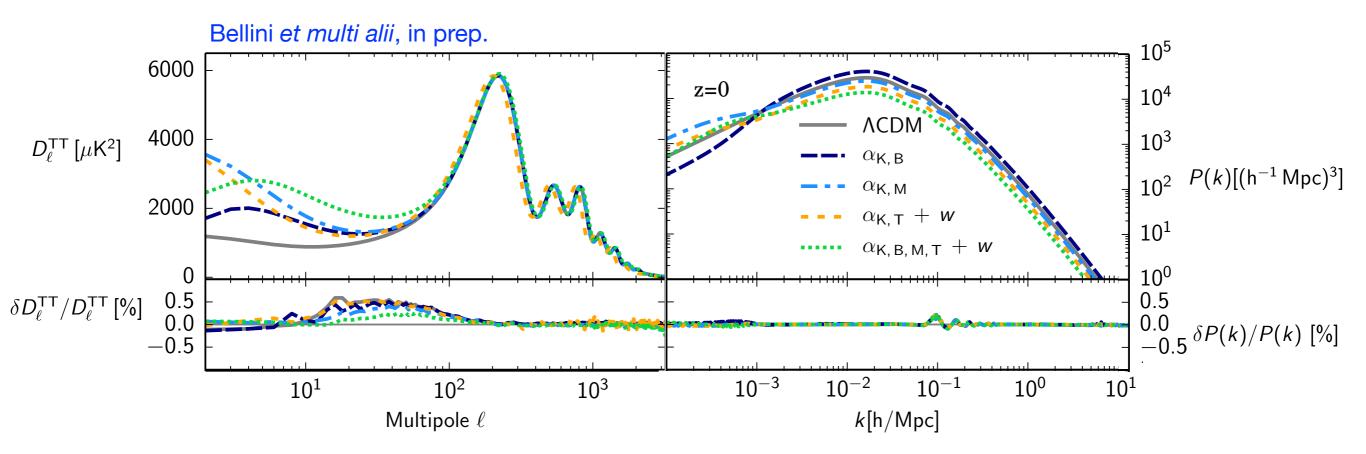
• Full Einstein-Boltzmann solver:

$$\frac{df_I}{d\eta} = C_I[f_I], \quad I = \gamma, \nu, b, \text{CDM}$$

$$\frac{\delta S^{(2)}}{\delta \pi} = 0 \qquad \& \qquad G_{ij}^{\text{modified}} = 8\pi G \sum_{I} T_{ij}^{(I)}$$

Codes agree at sub-percent level, in most cases

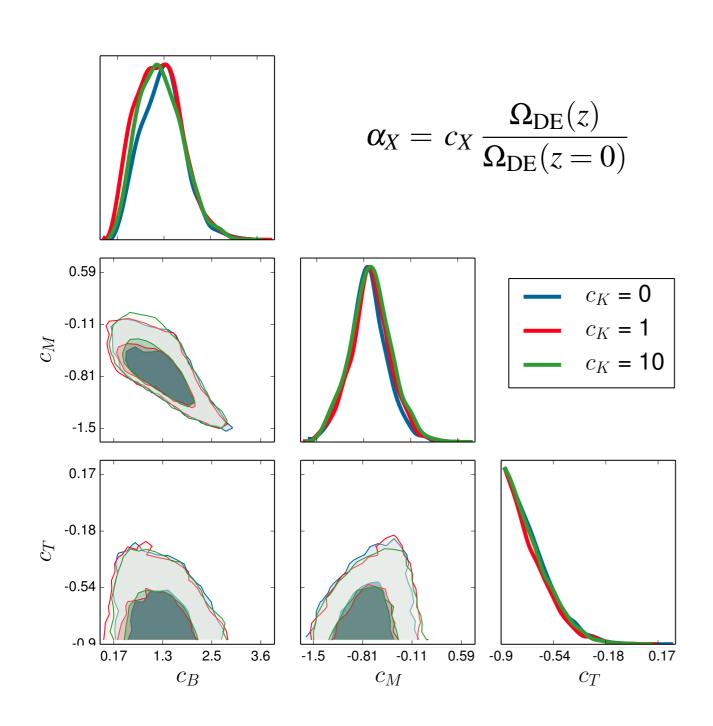
- EFTCAMB (from CMBFAST) (Hu, Raveri, Frusciante, Silvestri et al.)
- hi\_class (from CLASS) (Zumalacarregui, Bellini, Sawicki, Lesgourgues, Ferreira et al.)



### **Current Constraints**

MCMC analysis using hi\_class, from a combination of **CMB** (Planck2015WP), **P(k)** (WiggleZ), **BAO** (6dFGS, SDSS-MGS, BOSS) and **RSD** (6dFGS, MGS, LRG, Vipers, BOSS, WiggleZ)

Bellini, Cuesta, Jimenez, Verde 15



"The improvement in the fit at the expense of adding extra parameters, quantified in terms of difference of log likelihood is not significant"

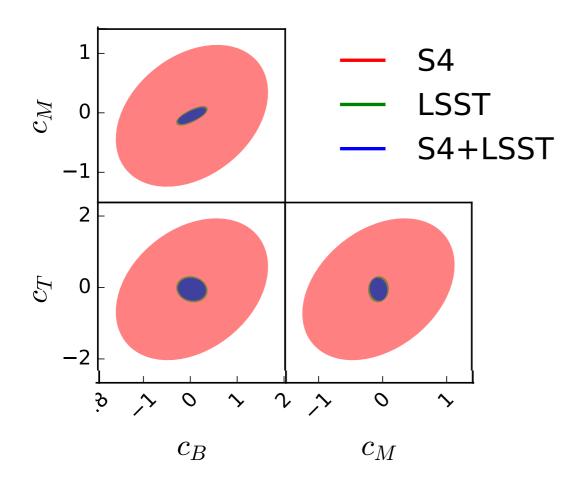
> Log  $(E_{Hordenski}/E_{\Lambda CDM}) = 0.09$ No evidence against  $\Lambda CDM$

### Future constraints

Fisher matrix analysis using hi\_class, from a combination of **stage 4 CMB** experiment and **LSST** telescope

Alonso et al. 16

| Case    | $ >\omega_{\mathrm{BD}}, 95\% \mathrm{C.L.} $ | $\sigma(c_B)$ | $\sigma(c_M)$ | $\sigma(c_T)$ | $ \sigma(c_K) $ | $\sigma(w)$ | $ \sigma(\sum m_{\mathcal{V}})[\text{meV}] $ |
|---------|-----------------------------------------------|---------------|---------------|---------------|-----------------|-------------|----------------------------------------------|
| S4      | $2.9 \times 10^{3}$                           | 0.796         | 0.746         | 1.26          | 4.9             | 0.112       | 71                                           |
| LSST    | $1.2 \times 10^4$                             | 0.193         | 0.089         | 0.205         | 8.8             | 0.016       | 45                                           |
| S4+LSST | $1.3 \times 10^4$                             | 0.169         | 0.072         | 0.179         | 3.5             | 0.011       | 22                                           |



$$\alpha_X = c_X \frac{\Omega_{\mathrm{DE}}(z)}{\Omega_{\mathrm{DE}}(z=0)}$$

$$\sigma(\alpha_X) \sim \mathcal{O}(0.1)$$

Cassini (Bertotti et al. 03):  $\,\omega_{
m BD} > 40\,000\,$ 

This work:  $\omega_{\mathrm{BD}} > 20\,000$ 

# GW complementarity

Friction term and speed of gravitational waves is affected

$$\ddot{\gamma}_{ij} + H(3 + \alpha_M)\dot{\gamma}_{ij} - (1 + \alpha_T)\frac{\nabla^2}{a^2}\gamma_{ij} = 0$$
  $c_T^2 = 1 + \alpha_T$ 



# GW complementarity

Friction term and speed of gravitational waves is affected

$$\ddot{\gamma}_{ij} + H(3 + \alpha_M)\dot{\gamma}_{ij} - (1 + \alpha_T)\frac{\nabla^2}{a^2}\gamma_{ij} = 0$$
  $c_T^2 = 1 + \alpha_T$ 

$$c_T^2 = 1 + \alpha_T$$



Effect simultaneously in **slip** parameter

Saltas et al. 14, 16

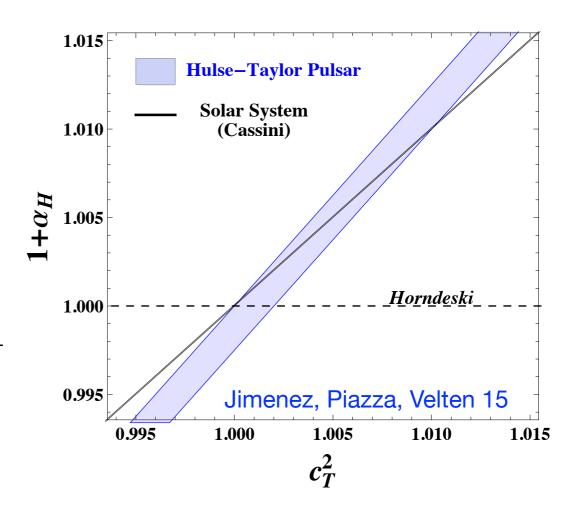
$$\Psi = \eta(\alpha_T, \alpha_M, \alpha_H)\Phi$$

Vainshtein screening ineffective for time-dependent cosmological VEV Babichev, Deffayet, Esposito-Farese 11

Jimenez, Piazza, Velten 15

$$\dot{P}_{MG} = \frac{G_{gw}}{G_N} \frac{c}{c_T} \dot{P}_{standard} = \frac{(1 + \alpha_H)^2}{c_T^3} \dot{P}_{standard}$$

$$\eta = \frac{1 + \alpha_H}{c_T^2}$$



# GW complementarity

Friction term and speed of gravitational waves is affected

$$\ddot{\gamma}_{ij} + H(3 + \alpha_M)\dot{\gamma}_{ij} - (1 + \alpha_T)\frac{\nabla^2}{a^2}\gamma_{ij} = 0$$
  $c_T^2 = 1 + \alpha_T$ 

$$c_T^2 = 1 + \alpha_T$$



Effect simultaneously in **slip** parameter

Saltas et al. 14, 16

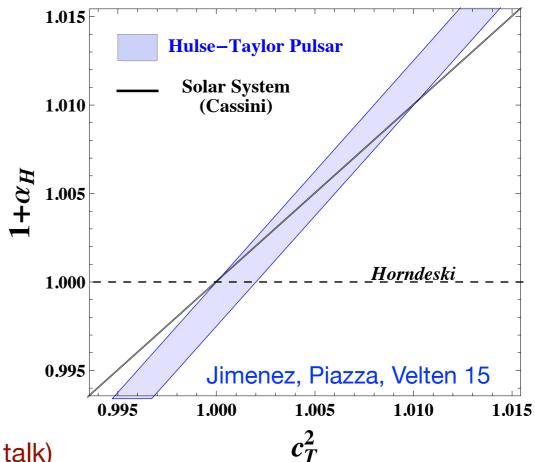
$$\Psi = \eta(\alpha_T, \alpha_M, \alpha_H)\Phi$$

Vainshtein screening ineffective for time-dependent cosmological VEV Babichev, Deffayet, Esposito-Farese 11

Jimenez, Piazza, Velten 15

$$\dot{P}_{\text{MG}} = \frac{G_{\text{gw}}}{G_N} \frac{c}{c_T} \dot{P}_{\text{standard}} = \frac{(1 + \alpha_H)^2}{c_T^3} \dot{P}_{\text{standard}} \qquad \stackrel{\Xi}{\stackrel{\bullet}{=}} 1.005$$

$$\eta = \frac{1 + \alpha_H}{c_T^2}$$



Constraints from black holes and stars (see Sakstein's talk)

### Conclusions

- Is ΛCDM the ultimate model or simplest approximation given the current precision of data?
- Scalar-tensor theories are testable candidate. Have extended beyond Horndeski with higher-order degenerate theories
- Unifying description, including higher-order degenerate scalar-tensor theories (and more). Preserves physical principles (locality, causality, unitarity, stability).
- Connection with linear observables (Einstein-Boltzmann codes) and GW (partially) worked out